
Channel Islands
CALIFORNIA STATE UNIVERSITY

Combining EEG, EMG and IMU to build a functional
Brain Computer Interface

A Thesis Presented to

The Faculty of the Computer Science Department

In (Partial) Fulfillment

of the Requirements for the Degree

Masters of Science in Computer Science

by

Student Name:
Adan Sanchez

Advisor:
Dr. Jason Isaacs

May 2021

© 2021
Adan Sanchez
ALL RIGHTS RESERVED

APPROVED FOR MS IN COMPUTER SCIENCE

Advisor: Dr. Jason Isaacs

May 27, 2021

Date

Dr. Bahareh Abbasi
May 27, 2021

Date

Dr. Scott Feister
May 27, 2021

Date

APPROVED FOR THE UNIVERSITY

Dr. Jill Leafstedt

5/28/2021
Date

Non-Exclusive Distribution License

In order for California State University Channel Islands (CSUCI) to reproduce, translate and
distribute your submission worldwide through the CSUCI Institutional Repository, your agreement to
the following terms is necessary. The author(s) retain any copyright currently on the item as well as
the ability to submit the item to publishers or other repositories.

By signing and submitting this license, you (the author(s) or copyright owner) grants to CSUCI the
nonexclusive right to reproduce, translate (as defined below), and/or distribute your submission
(including the abstract) worldwide in print and electronic format and in any medium, including but not
limited to audio or video.

You agree that CSUCI may, without changing the content, translate the submission to any medium
or format for the purpose of preservation.

You also agree that CSUCI may keep more than one copy of this submission for purposes of
security, backup and preservation.

You represent that the submission is your original work, and that you have the right to grant the
rights contained in this license. You also represent that your submission does not, to the best of
your knowledge, infringe upon anyone's copyright. You also represent and warrant that the
submission contains no libelous or other unlawful matter and makes no improper invasion of the
privacy of any other person.

If the submission contains material for which you do not hold copyright, you represent that you have
obtained the unrestricted permission of the copyright owner to grant CSUCI the rights required by
this license, and that such third party owned material is clearly identified and acknowledged within
the text or content of the submission. You take full responsibility to obtain permission to use any
material that is not your own. This permission must be granted to you before you sign this form.

IF THE SUBMISSION IS BASED UPON WORK THAT HAS BEEN SPONSORED OR SUPPORTED
BY AN AGENCY OR ORGANIZATION OTHER THAN CSUCI, YOU REPRESENT THAT YOU
HAVE FULFILLED ANY RIGHT OF REVIEW OR OTHER OBLIGATIONS REQUIRED BY SUCH
CONTRACT OR AGREEMENT.

The CSUCI Institutional Repository will clearly identify your name(s) as the author(s) or owner(s) of
the submission, and will not make any alteration, other than as allowed by this license, to your
submission.

Combining EEG, EMG and IMU to build a functional Brain Computer Interface________________
Title of Item

Electroencephalogram; Electromyogram; IMU; Machine learning; Brain-Computer Interface____
3 to 5 keywords or phrases to describe the item

Adan M. Sanchez
Author(s) Name (Print)

5/26/2021
Date

This is a permitted, modified version of the Non-exclusive Distribution
License from MIT Libraries and the University of Kansas.

Combining EEG, EMG and IMU to build a functional
Brain Computer Interface

Adan Sanchez

May 24, 2021

Abstract

A Brain-Computer Interface (BCI) is a direct connection between a computer and
the brain - in this case, the human brain. Invasive BCIs tend to perform better as
the amount of noise decreases when electrodes are placed under the scalp. However,
placing the electrodes inside the skull increases the complexity of the device and risk
to the user. Non-invasive BCIs are a viable alternative to this. Furthermore, the noise
encountered when placing the device outside of the skull can be filtered out by modern
machine learning algorithms. In this study, the EMOTIV Epoc+ headset, equipped
with 14 surface electrodes and 2-axis motion sensors, was used to gather EEG, EMG
and IMU data from a user. The machine learning algorithms tested were Logistic
Regression, Decision Trees, Adaptive Boosting, Random Forests, Gradient Boosting
Trees, Support Vector Machines and a Multilayer Perceptron Neural Network. Their
performance is presented and directly compared along with different combinations of
EEG, EMG, and IMU data being fed into them. Several viable combinations were
discovered, some of which yielded accuracy of up to 95%. These results imply the
implementation of a versatile BCI is feasible using machine learning algorithms and a
consumer grade EGG headset.

Contents

1 Introduction 1
1.1 Introduction to BCI .. 1
1.2 Challenges and Contributions .. 2
1.3 Paper Outline .. 2

2 Background 3
2.1 Electroencephalogram (EEG) .. 3
2.2 Electromyograms (EMG) .. 3
2.3 Inertial Measurement Unit (IMU) ... 4
2.4 Machine Learning Techniques .. 5

2.4.1 Logistic Regression ... 5
2.4.2 Decision Trees ... 6
2.4.3 AdaBoost .. 7
2.4.4 Random Forests .. 8
2.4.5 Gradient Boosting Trees ... 9
2.4.6 Support Vector Machines ... 9
2.4.7 Neural Networks .. 10

3 Experiment Set Up 12
3.1 Subjects .. 12
3.2 Data Collection ... 12
3.3 Methods .. 14
3.4 Data Analysis .. 16

3.4.1 EEG Data .. 16
3.4.2 IMU Data .. 18
3.4.3 EMG Data .. 19

3.5 Data Pre-processing ... 21

4 Classification 22
4.1 Evaluating Classifiers .. 23

4.1.1 Logistic Regression ... 25
4.1.2 Decision Trees ... 27
4.1.3 AdaBoost .. 29
4.1.4 Random Forests .. 31
4.1.5 Gradient Boosting Trees ... 33
4.1.6 Support Vector Machines ... 35
4.1.7 Neural Network .. 37

5 Results 39

6 Discussion 41

i

7 Conclusion and Future Work 42
7.1 Conclusion .. 42
7.2 Future Work ... 42

A Code 44

References 51

ii

List of Figures

1 Example of EEG Headset [13] .. 3
2EMGDevice[17]... 4
3IMUDevice[20]... 5
4StandardlogisticsigmoidfunctionwhereL =1,k =1,x0 =0 6
5DecisionTreemodeloutline[23].. 7
6 AdaBoost method outline [25] .. 8
7RandomForestsmakingaprediction[26].. 8
8GradientBoosting[28]... 9
9 Hyperplane visualized [30] ... 10
10 Hyperplane margin in SVM model [30] ... 10
11 Outline of neural network [32] .. 11
12 Emotiv EPOC Headset [34] .. 13
13 EEG headset placement [35] .. 13
14 Headset Sensor Mapping [36] .. 14
15 Prompts displayed while capturing data... 15
16 EEG vs Time ... 17
17 IMU vs Time ... 18
18 EMG vs Time ... 20
19 Logistic Regression Confusion Matrices.. 26
20 Decision Trees Confusion Matrices. ... 28
21 AdaBoost Confusion Matrices.. 30
22 Random Forests Confusion Matrices.. 32
23 Gradient Boosting Confusion Matrices.. 34
24 Support Vector Machines Confusion Matrices... 36
25 Neural Network Confusion Matrices. ... 38
26 Logistic Regression Code ... 44
27 Decision Trees Code ... 44
28 AdaBoost Code ... 45
29 Random Forests Code .. 45
30 Gradient Boosting Code ... 46
31 Support Vector Machines Code ... 46
32 Neural Network Code ... 47

iii

List of Tables

1LogisticRegressionResults(inpercentage)...25
2DecisionTreesResults(inpercentage)..27
3 AdaBoost Results (in percentage) ... 29
4RandomForestsResults(inpercentage).. 31
5GradientBoostingResults(inpercentage)...33
6SupportVectorMachinesResults(inpercentage)... 35
7 Neural Network Results (in percentage) ... 37
8ResultsOverview:Precision(inpercentage)... 39
9 P-Values for Ensemble Classifiers ... 40
10 IMU Sensor Only Results (in percentage) ... 40

iv

1 Introduction

1.1 Introduction to BCI

Human-computer interaction is concerned with the design and use of novel interfaces between
people and computers. One specific instance of this is a Brain-Computer Interface (BCI),
sometimes referred to as a neural-control interface (NCI) or mind-machine interface (MMI).
This technology provides a direct link between an external device and the brain. Often,
BCIs aim to provide biotechnological solutions for physical ailments, such as paralysis, by
integrating the brain with assistive devices [1].

BCIs can be mostly categorized as invasive, partially invasive, and non-invasive. Invasive
and partially invasive methods tend to require surgery in order to implant a device or part of
a device into the user. This can create a great risk to the user and increase the complexity of
working with the BCI. Presently, non-invasive BCIs tend to rely on electroencephalography
(EEG) to acquire data from the user through wearable devices such as headbands or earbuds.

This paper seeks to test and implement a BCI that uses other sensors, such as inertial
measurement units (IMU) or electromyograms (EMG), in conjunction with EEG in order to
produce a more efficient BCI. An advantage of such an interface would be that it would be
able to operate in multiple paradigms which would make it very versatile [2]. For example,
this device could be easily adapted to meet the needs of someone who has limited use of
their limbs but still has full control over the muscles around the neck and head. Machine
learning algorithms can also be used in to minimize noise and normalize the process of data
acquisition methods for different individuals [3] [4] [5]. It is for this purpose that the data
collected in this experiment will be used to train a number of different machine learning
algorithms.

Ideally, every machine learning algorithm should aim for 100% precision. Realistically,
this is not possible even in the best of cases. Comparing proposed BCIs to each other can
be challenging as well, as they do not all use the same data set or operate under the same
conditions. Thus, in order to measure the feasibility of the BCI proposed in this paper we
must first establish what it would take for it to be feasible.

In this context, feasibility means that the BCI would be precise, robust and able to be
implemented under various circumstances. A precise BCI would achieve significantly higher-

1

than-random precision (>70%) precision. A robust BCI would mean an equally high recall
as we want to minimize the number of misclassified states. Being able to be implemented
under various circumstances would mean using the EEG sensor in conjunction with either
EMG and/or IMU in order to achieve the desired results.

1.2 Challenges and Contributions

Obtaining meaningful data from the brain, noninvasively, can be challenging as different fac­
tors, such as skull thickness, hair density, different brains or even different eye movements,
can produce noise which hinders the ability to produce clear, concise commands that a com­
puter can execute [6]. Additionally, many proposed BCIs target severely disabled individuals
while using abled-body subjects to develop them [7] which can hinder their real-world ap­
plication. Even so, BCIs that purely rely on EEG have already been produced with limited
results. In [8], we see how a number of existing BCIs rely on only one type of suitable brain
signals. This can greatly reduce their usability as some users cannot produce the specific
brain activity patterns required for these systems. Thus, the need for a BCI with greater
usability in different paradigms arises.

The contribution of this paper is to provide methodologies for a BCI that is able to
operate within different paradigms through the use of different sensors in addition to EEG
in an effort to reduce the reliability on a single type of brain signal. Different machine
learning algorithms and techniques are also evaluated in order to increase the efficacy of the
BCI.

1.3 Paper Outline

The remainder of this paper is structured as follows: In Chapter 2, a brief overview of the
different data collection techniques is given. Also provided in this chapter is an overview of
the machine learning techniques used in this paper. Chapter 3 revolves around the data used
in this paper. In this chapter, the data collection methods are discussed, an overview of the
data set acquired is given and the pre-processing techniques used are presented. In Chapter
4, the implementation of the machine learning algorithms is shown as well as the results in
different paradigms with each algorithm. The overall results from the tests are discussed in
Chapter 5 and the meaning of these results is explored in Chapter 6. A conclusion and a
discussion of future work is given in Chapter 7.

2

2 Background

2.1 Electroencephalogram (EEG)

Ionic current within the neurons of our brain result in voltage fluctuations. Although subtle,
these can be measured through the use of the electrophysiological monitoring method known
as electroencephalography [9]. Hans Berger, a German psychiatrist in the 20th century, was
the first to record and analyze EEG signals from a human and the first to describe abnormal
EEGs in neurological diseases [10]. He identified the oscillatory activity of these brain waves
with devices for detecting small electric currents, first a string galvanometer and later a
Siemens double-coil galvanometer [11]. Today’s EEG detectors are more advanced than the
galvanometers used by Berger one hundred years ago. So much so in fact, that it is a leading
method used in BCIs [12].

Figure 1: Example of EEG Headset [13]

2.2 Electromyograms (EMG)

Electromyography could most aptly be characterized as an electrodiagnostic medicine tech­
nique that measures electrical activity in response to a nerve’s stimulation of a muscle [14].
The term electromyography was first introduced by French scientist Etienne-Jules Marey in
1890 [15]. However, experiments using EMG date back to 1666 when the first documented

3

experiments on electric eels by Italian scientist Francesco Redi were conducted. In present
day, specifically in Computer Science, we have used EMG as form of human-computer in­
teraction and has even been successfully used in some BCIs. In [16], we see that EMG can
be viable for detecting movement intention, with 22/30 of their patients showing sufficient
surface EMG in their finger/wrist extensor muscles. Although in this paper they developed
an EMG signal detector without the use of machine learning, it proves that it can be suc­
cessfully used to detect movement intention in conjunction with EEG. In Figure 2, we can
see an EMG device capturing muscle activity of superficial masseter and anterior temporalis
bilaterally.

Figure 2: EMG Device [17]

2.3 Inertial Measurement Unit (IMU)

An inertial measurement unit is a device that can measure the specific force, angular rate
and/or orientation of a body through the use accelerometers or gyroscopes [18]. What a
specific IMU can measure and report varies by model but in general, they all serve to elec­
tronically provide a sense of spacial awareness. While often incorporated into navigational
systems to calculate attitude, angular rates, linear velocity or even the position relative to a
global reference frame, they also serve as orientation sensors in many other products. One
of these use cases is in BCIs, often in conjunction with EEG. In [19], we see several success­
ful uses of IMUs, mostly with Kalman filter based algorithms, in order to classify/predict
motions of a user. An example of one of an IMU device can be seen in Figure 3.

4

Figure 3: IMU Device [20]

2.4 Machine Learning Techniques

Although relatively young, the machine learning field is rapidly growing. A great number of
machine learning algorithms and their variations now exists. Far too many to test individ­
ually. Thus, a limited number had to be chosen. The algorithms seen here were chosen due
to their robustness and widely available documentation.

2.4.1 Logistic Regression

Logistic regression, in its simplest form, is a statistical method that models a binary de­
pendent variable using a logistic function. This is often used to model the probability of a
certain event or class existing, e.g. pass/fail, win/loose. Models with increased complexity
can be extended to model multiple classes or events at a time [21]. In image recognition,
such a method could be used to model the probability, between 0 and 1, of a certain object
being in a given picture.

5

An example of the logistic function,

f (x) = ------L------ (1)
1 + e-k(x-x0)

where L, the curve’s maximum value; k, the logistic growth rate or steepness of the curve;
x0 ,thex value of the sigmoid’s midpoint, can be seen in Figure 4.

Figure 4: Standard logistic sigmoid function where L =1,k =1,x0 =0

However, multi-class classification means that there are more than two classes to classify.
Thus, a One-vs-Rest (OvR) approach is used when implementing logistic regression. This
approach splits the data set into multiple binary classification problems which allows a binary
classifier to be trained for each problem created.

2.4.2 Decision Trees

A decision tree is a tree-like model which aims to predict the value of a target variable by
learning simple decision rules inferred from the data features. In this case, a decision tree is
used to classify different classes. A tree model will usually consist of internal nodes, which
represent an attribute of the model, branches, which represent a test outcome and a leaf
node which represents a class label. In decision tree learning, branches represent feature
conjunctions which lead to class labels known as leaves. Most decision tree learners, such
as the one used in this paper, are deterministic which means that given a fixed data set,

6

they produce a tree with the same structure. An outline of a decision tree model can be
seen in Figure 5. These models are quite popular in machine learning due to their relative
simplicity and ease of implementation [22]. However, a disadvantage of decision trees is they
could create over-complex trees that do not generalize data as well.

Figure 5: Decision Tree model outline [23]

2.4.3 AdaBoost

AdaBoost, or Adaptive Boosting, is what is known as a meta-estimator. It basically combines
multiple weaker classifiers into a stronger one. A weak model is one which may perform better
than random guessing but not by a lot. A feature of AdaBoost is that it can be applied on
top of almost any given classifier in order to learn from the mistakes of the weaker model and
provide a stronger model in the end. In this specific case, AdaBoost is paired with a model
that specifically targets multi-class classification referred to as Stagewise Additive Modeling
using a Multi-class exponential loss function or AdaBoost-SAMME for short. This model is
outlined in section 1.2 of [24]. An overview of the AdaBoost method can be seen in Figure 6.

7

Figure 6: AdaBoost method outline [25]

2.4.4 Random Forests

Random forests are an ensemble learning classification method. As the title implies, this
method consists of a large number of individual decision trees. Each tree model, generally
all with equal weight, produces a class prediction and the class with the most votes becomes
the model used for a future prediction with each model. We can see an example of this in
Figure 7. One of the main advantages of this method versus just using Decision Trees is
that Random Forests can correct for overfitting which tends to occur in Decision Trees. An
advantage of this method is that weaker models can be built concurrently and independently
of others, thus speeding up training time.

Figure 7: Random Forests making a prediction [26]

8

2.4.5 Gradient Boosting Trees

Gradient Boosting Trees or Gradient Boosting for short is another ensemble classification
technique. This technique is essentially a version of Adaptive Boosting (2.4.3) where the
weak classifier is a Decision Tree, hence the trees in its name. Boosting refers back to
the idea of using a weaker classifier to build a stronger one [27]. This technique differs from
Random Forests in two main areas: the way trees are built and the way results are combined.
Gradient Boosting builds trees one at a time giving it the ability to correct errors made by
previous trees. A weakness of this algorithm is that it can be easier to overfit than regular
Random Forests. However, through careful tuning of parameters this can be avoided.

Figure 8: Gradient Boosting [28]

2.4.6 Support Vector Machines

Support Vector Machines (SVM) aim to distinctly classify N classes, or features, by finding
a hyperplane in the N-dimensional plane [29]. Hyperplanes can be simply thought of as
boundaries between classes as seen in Figure 10. In 2-dimensions, a hyperplane would simply
be a line and in 3-dimensions it could be thought of as a plane. However, SVM allows us to
extrapolate this concept to N -dimensions but it becomes difficult to visualize the hyperplane
when N>3. Points closer to the hyperplane are referred to as the support vectors which
help position and orient the hyperplane. As the margin between these points increases, we
maximise the margin of our model.

In Figure 9, this can be conceptualized for 2D and 3D dimensions.

9

Figure 9: Hyperplane visualized [30]

Figure 10: Hyperplane margin in SVM model [30]

2.4.7 Neural Networks

Neural Networks, formally known as Artificial Neural Networks, are sets of interconnected
artificial neurons inspired by neurons in a brain. This term is an umbrella term that encom­
passes many types of neural networks. In this case, we will be using a Multilayer Perceptron
(MLP) neural network which consists of at least three layers of nodes. These include an
input layer, a hidden layer and an output layer, although more complex models can exist.
MLPs generally achieve good generalisation of unseen data, specifically in cases where full
theoretical models cannot be constructed [31]. This makes an MLP neural network a good
candidate for this application.

10

Figure 11: Outline of neural network [32]

11

3 Experiment Set Up

3.1 Subjects

While conducting this research, a worldwide pandemic took place. This pandemic was
caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV2). Given the nature
of the virus, close proximity to others was extremely limited. As with almost everything
at the time, this experiment was ultimately affected. Social distancing measures made the
feasibility of obtaining data from a large pool of subjects impossible. Therefore, all data
used in this experiment was collected from its author as that proved to be the safest and
most ethical way of completing this research. The data was collected over a period of two
months and consisted of 100 sessions. Each session lasted around 3 minutes.

3.2 Data Collection

The headset used in this experiment is the Emotiv Epoc+ as seen in Figure 12. This
headset was chosen due to its relative low cost and level of accuracy at its price range [33].
The headset is equipped with 14 electrodes as well as a gyroscope. The location of which can
be seen in Figure 13 and Figure 14. EEG electrode location can be placed on the following
places: pre-frontal (Fp), frontal (F), temporal (T), parietal (P), occipital (O), central (C),
and between Fp and F (AF). Their lateralized location is marked as follows: odd numbers
(1,3,5,7) refer to electrodes placed on the left hemisphere, even numbers (2,4,6,8) refer to
those on the right hemisphere.

Using these electrodes, the headset is able to capture 14-channel electroencephalography
(EEG) data with a rate of up to 128 Hz. Additionally, it is also able to capture gyroscopic
data in two axes (X and Y or left/right and up/down from the perspective of the user)
at the same resolution. The location of this gyroscope can be found behind the Front
Power/Charging Indicator as seen in Figure 12. Using triangulation, the headset is also able
to generate electromyography (EMG) data at a resolution of 32 Hz. It is also able to capture
alpha, low beta, high beta, gamma and theta bands at a resolution of 8 Hz using proprietary
algorithms. For the purposes of this experiment, only raw EEG, raw gyroscopic data and
EMG data will be used.

12

Figure 12: Emotiv EPOC Headset [34]

Figure 13: EEG headset placement [35]

13

Figure 14: Headset Sensor Mapping [36]

3.3 Methods

This experiment aims to test whether a discrete number of pre-determined actions can be
predicted from the data collected from a user. In this case, there are 4 pre-determined actions
that the user is instructed to perform. The actions consist of looking in a given direction
(up, down, left, right) while simultaneously thinking of moving in that direction. The user
is told to follow these instructions for given period of time in order to allow the headset to
collect enough data to obtain an accurate state of mind (see Figure 15). Thirty seconds was
chosen as the given time interval to collect data for each direction as a user could become
distracted if they are not stimulated for long periods of time.

14

(a) Start (b) Transition

(c) Right (d) Left

(e) Up (f) Down

(g) End

Figure 15: Prompts displayed while capturing data.

While there are only 5 different actions we would like to segregate from the data col­
lected, there are in fact 6 total states the user can find themselves in during the data collection
process. These include a baseline state, a transition state as well as the four different action
states. The transition state is only there to ease the user’s transition from one state to
another. It is discarded when processing the data for training. The process of collecting
data begins when the user is sat in front of a computer screen while wearing the headset.
After the user makes themselves comfortable in front of the screen, the process starts when
a prompt displayed on the screen tells them to try and clear their minds for the next 30
seconds.

After this, the first action prompt appears on screen telling them to look in the given
direction while tilting their head so that they directly face the tip of the arrow displayed on
screen. This is so that we may obtain the greatest amount of head movement so that the
gyroscope sensor in the headset will be able to collect data. In order to keep the amount of
rotation constant between runs and subjects, the size of screen should remain constant while
collecting data. Before the next action is given, a 10 second transition slide is displayed
on screen so that the user may be prepared for the next action. This is repeated 3 more
times to total 180 seconds of data. We obtain approximately 128 data points of EEG and
gyroscopic data per second and 32 points of EMG data per second. Each session, the order
of the action prompts is randomized so that the user may not memorize a pattern and loose
focus.

3.4 Data Analysis

3.4.1 EEG Data

We can visualize the data of a given session by plotting it over time. In Figure 16, we can see
a time series representation for all 14 EEG channels where time on the X-axis is measured
in seconds and the Y-axis is measured in microvolts. Here, 6 different states are labeled
and separated by a dotted vertical line. Each line is labeled according to the location of the
electrode in the head of the user as seen in Figure 14. This allows us to see certain patterns
that occur within our data. For example, we tend to see relative big spikes whenever we
move from one state to another.

16

EE
G

(m
icr

ov
ol

ts
)

Figure 16: EEG vs Time

17

3.4.2 IMU Data

After graphing our 2 channels of IMU data (X and Y axis position), we see similar results
in Figure 17. We also see big spikes when moving from one state to another.

Figure 17: IMU vs Time

18

3.4.3 EMG Data

When graphing our EMG data, our graph looks different from the previous graphs. This is
due to the fact that this data is a digital output of a triangulation algorithm rather than
an analog reading of a sensor. Figure 18 shows the different types of outputs available. The
readings of each output can be interpreted as follows:

1. BlinkWink

0 - Neutral state

1 - Blink

2 - Left Wink

3 - Right Wink

2. Horizontal Eyes

-1 - Eyes look left

0 - Eyes look forward

1 - Eyes look right

3. Upper Face

0 - Neutral state

1 - Action on left side of face

2 - Action on right side of face

4. Upper Face Power: Intensity of action taken normalized between 0 and 1.

5. Lower Face

0 - Neutral state

1 - Action on left side of face

2 - Action on right side of face

6. Lower Face Power: Intensity of action taken normalized between 0 and 1.

19

Figure 18: EMG vs Time

20

3.5 Data Pre-processing

The headset used in this experiment can, at its highest settings, produce 128 different samples
of EEG data per second per electrode with a total of 14 electrodes. Additionally, each
sample may additionally contain the IMU data and EMG data. We can easily see how a
lot of data may be collected in a short amount of time. If we were to train a classifier with
one set of samples at a time, the classifier would be making a decision every 1/128th of a
second. Even with relative high accuracy, this many decisions in such a short amount of
time could be problematic for real-world applications. Therefore, in an effort to reduce the
computing power needed for pre-procession of the data, a batch learning method is used in
this experiment as a form of dimensionality reduction. Instead of training with one sample
at a time, a number of samples for a given time interval is given to the classifiers in a batch
form. In our case, the given time interval is 30 seconds as that is how long the user is asked
to concentrate on a specific direction.

21

4 Classification

The tuning of hyperparameters is often be used to maximize the efficiency of a given classifier.
This is the case for this experiment. For each classifier tested, their hyperparameters were
tuned using a grid-search method. Although time intensive, this process has been proven to
improve the performance of a classifier [37].

Cross validation is a group of statistical techniques that helps assess how the results of
a statistical model will generalize. In this instance, K-fold cross-validation is used in order
to help prevent overfitting in the trained models. In K-fold cross-validation, the dataset
is split into K parts or “folds.” The model is then trained using K-1 subsets, leaving one
remaining set as validation data. The accuracy of the model is then calculated by taking the
average accuracy of all K subsets on the validation data [38]. Stratified random sampling is
also often used with K-fold cross-validation as is the case here as well. This means that the
sampling of the data is proportioned in such a way that the subsets reflect the proportion of
the training set.

Some machine learning algorithms use the Euclidean distance to calculate distance be­
tween points. In these cases, it is important to normalize all features so as to not let one
particular feature disproportionately affect calculated distances. The support vector ma­
chine and the multilayer perceptron neural network are affected by this phenomena, thus
appropriate scaling techniques were used before training [39].

In machine learning, regularization is a technique used to better fit a function to a
given training set and thus reducing error. It does this by constraining coefficient estimates
towards zero, much like a form of regression [40]. This technique is sometimes used when
trying to reduce or avoid overfitting. Regularization is used along with the support vector
machine and neural network classifier presented here as it has shown it can improve efficiency
[41].

To implement these methods, the scikit-learn [42] machine learning library in Python is
extensively used.

22

4.1 Evaluating Classifiers

Each of the 100 sessions recorded was split into 5 classes (Baseline, Left, Right, Up, Down).
This meant the data set used for this experiment consisted of 500 total samples. This was
split into 80% testing data and 20% validation data. Thus, making the input size for our
classifiers 400 samples, leaving the remainder 100 samples for testing.

In order to evaluate each classifier properly, all combinations of sensor data were used
to find the best possible performance. Data from the EEG sensor consists of 14 features as
each electrode in the headset has an individual output. Data from the IMU sensor consists
of 2 features, X-axis and Y-axis. Data from the EMG sensor consists of 6 different features.
When combining any two or more of these sensors, the total input features is equal to the sum
of their individual features. Using the batch pre-processing method described previously, the
feature space for EEG data is 3835 x 14. Since the IMU collects data at the same rate, its
input space is 3835 x 2 as we only have 2 features. Finally, EMG has an input space of 958
x 6 as this data is collected at a slower rate.

In addition to K-fold cross validation, the standard deviation of the KFold average is
also used in order to take into account the variability in the data when comparing the means.
The classifiers are also evaluated by calculating precision, recall and F-Score. In order to
calculate this, we must first define the following terms:

True Positives (TP) - Correctly predicted positive values where the value of the actual
class and predicted class are the same.
False Positives (FP) — Incorrectly predicted positive values.
False Negatives (FN) - Incorrectly predicted negative values.

With these defined, we can then calculate the following:
Precision - The ratio of correctly predicted positive observations to the total predicted pos­
itive observations.

TP
Precision = TP + FP

Recall (Sensitivity) - The ratio of correctly predicted positive observations to the all obser-
vations in actual class.

Recall =
TP

TP + FN

23

F-Score - The weighted average of Precision and Recall.

FScore = 2 x
Recall x Precision
Recall + Precision

24

4.1.1 Logistic Regression

After careful hyperparameter tuning, the code for training the Logistic Regression classifier
can be seen in Figure 26 found in Appendix A. An advantage of this classifier is that it can
be trained in parallel mode which vastly speeds up training times. We can see the results
in Table 1. From these we see that in the best of cases, it can outperform random using
IMU data. In cases without IMU data, EEG by itself still performs well with a 73.98%
precision. However, the model does lag behind in its KFold average precision with a 66.8%.
This suggests this model might not be the best candidate for unseen data. In Figure 19a,
we can see that it labeled a significant portion of Left and Right states as Down states.

Table 1: Logistic Regression Results (in percentage)

Sensor/s Precision Recall FScore KFold KFold SD

EEG 73.98 72.00 71.18 66.8 0.101
IMU 94.78 94.00 94.20 94.4 0.040
EMG 36.42 36.00 35.90 34.2 0.056
EEG/IMU 83.85 83.00 83.09 77.8 0.104
EEG/EMG 51.10 51.00 50.93 47.4 0.076
IMU/EMG 48.97 48.00 47.33 48.8 0.059
EEG/EMG/IMU 48.99 49.00 48.77 49.6 0.079

25

(a) EEG Data (b) IMU Data

(c) EMG Data (d) EEG, IMU Data

(e) EEG, EMG Data (f) IMU, EMG Data

(g) EEG, IMU, EMG Data

Figure 19: Logistic Regression Confusion Matrices.

4.1.2 Decision Trees

The code for training the Decision Trees classifier can be seen in Figure 27. Referencing
Table 2 found in Appendix A, we see that the Decisions Trees classifier, although better
than random, was not the best classifier of the pack. The best precision was IMU once again
but this time we only see it reach 69.67%. However, the KFold average precision remain
consistent with single training sessions which means our model will generalize just as well.
In Figure 20, we see that for the most part the incorrectly predicted classes are distributed
somewhat evenly.

Table 2: Decision Trees Results (in percentage)

Sensor/s Precision Recall FScore KFold KFold SD

EEG 41.53 42.00 41.48 42.8 0.083
IMU 69.67 69.00 68.64 63.4 0.052
EMG 34.96 35.00 34.89 37.2 0.088
EEG/IMU 61.37 62.00 60.71 46.8 0.076
EEG/EMG 57.27 56.00 55.88 43.6 0.098
IMU/EMG 71.53 71.00 70.53 41.4 0.06
EEG/EMG/IMU 64.65 64.00 63.92 41.8 0.096

27

(a) EEG Data (b) IMU Data

(c) EMG Data (d) EEG, IMU Data

(e) EEG, EMG Data (f) IMU, EMG Data

(g) EEG, IMU, EMG Data

Figure 20: Decision Trees Confusion Matrices.
28

4.1.3 AdaBoost

For the most part, the only hyperparameter that seems to make the most difference in
training the AdaBoost classifier is the number of estimators. As seen in Figure 28 found in
Appendix A, an optimal number was chosen after using the GridSearch method. Overall,
we see that this classifier shows significant improvements over that previous classifier as
seen in Table 3. This classifier being an ensemble method could be a big contributor in the
improvement of the results. We see that once again IMU data seems to provide the best
precision, however, recall is not so great in this case. We can see why in Figure 21b as half
of the Down states were incorrectly classified as Up states.

Table 3: AdaBoost Results (in percentage)

Sensor/s Precision Recall FScore KFold KFold SD

EEG 65.29 64.00 64.01 72.00 0.067
IMU 80.06 70.00 70.3 74.80 0.106
EMG 47.46 41.00 41.33 45.60 0.119
EEG/IMU 81.58 79.00 78.83 80.60 0.056
EEG/EMG 70.17 67.00 66.71 68.40 0.074
IMU/EMG 80.42 72.00 73.00 73.80 0.073
EEG/EMG/IMU 80.37 79.00 79.37 81.80 0.043

29

(a) EEG Data (b) IMU Data

(c) EMG Data (d) EEG, IMU Data

(e) EEG, EMG Data (f) IMU, EMG Data

(g) EEG, IMU, EMG Data

Figure 21: AdaBoost Confusion Matrices.
30

4.1.4 Random Forests

Random forests is another ensemble algorithm and the code used for training it can be seen
in Figure 29 found in Appendix A. As the results in Table 4 indicate, this is one the best
classifiers thus far. The lowest precision reported is with EMG data at 54.01%. This is
still over double that of random. IMU data by itself still provides a respectable precision of
88.94%. Surprisingly, the best precision is reported to be the one with EEG and IMU data
combined at 91.21%. Overall, precision and recall were pretty even along with the KFold
average precision which means these models are very robust and well generalized. This is
further reflected in Figure 22.

Table 4: Random Forests Results (in percentage)

Sensor/s Precision Recall FScore KFold KFold SD

EEG 82.14 82.00 81.70 79.20 0.066
IMU 88.94 87.00 86.78 88.60 0.049
EMG 54.01 53.00 52.26 53.00 0.103
EEG/IMU 91.21 91.00 90.99 87.20 0.056
EEG/EMG 77.82 78.00 77.46 81.20 0.095
IMU/EMG 85.28 85.00 84.79 88.00 0.039
EEG/EMG/IMU 84.44 84.00 83.97 87.00 0.043

31

(a) EEG Data (b) IMU Data

(c) EMG Data (d) EEG, IMU Data

(e) EEG, EMG Data (f) IMU, EMG Data

(g) EEG, IMU, EMG Data

Figure 22: Random Forests Confusion Matrices.
32

4.1.5 Gradient Boosting Trees

The code used for training Gradient Boosting Trees, our last ensemble classifier, can be seen
in Figure 30 found in Appendix A. With this classifier, the highest scores are achieved when
combining either EEG, EMG, IMU or all of them. In fact, this classifier seems to yield the
best results thus far. In Table 5, we can see that we obtain a result higher than 70% in most
cases. KFold tells us once more that these models will do relatively well with unseen data.
The confusion matrices seen in Figure 23 tell a similar story.

Table 5: Gradient Boosting Results (in percentage)

Sensor/s Precision Recall FScore KFold KFold SD

EEG 79.96 79.00 79.04 78.19 0.089
IMU 89.30 89.00 89.06 94.80 0.016
EMG 63.45 63.00 62.83 59.00 0.057
EEG/IMU 93.34 93.00 93.01 93.80 0.052
EEG/EMG 84.46 84.00 83.68 78.20 0.080
IMU/EMG 95.12 95.00 94.97 95.20 0.026
EEG/EMG/IMU 94.41 94.00 94.06 95.60 0.035

33

(a) EEG Data (b) IMU Data

(c) EMG Data (d) EEG, IMU Data

(e) EEG, EMG Data (f) IMU, EMG Data

(g) EEG, IMU, EMG Data

Figure 23: Gradient Boosting Confusion Matrices.

4.1.6 Support Vector Machines

The code for training the Support Vector Machines classifier can be seen in Figure 31 found
in Appendix A. Here we can also see data being normalized using the StandardScalar()
from sklearn package in python. Additionally, we can also see regularization being used with
the C parameter. In Table 6 we see that in some cases, such as that of IMU data, SVM
performed much better than a large portion of the classifiers with a precision of 95.10%.
However, it did not perform as well in other cases - specifically those without IMU data.
SVM operates by using the distance between points, it makes sense that it tends to do better
in cases where IMU data is present since IMU data is a map of where the user has been.
Overall, it still performed reasonably well as seen in Figure 24.

Table 6: Support Vector Machines Results (in percentage)

Sensor/s Precision Recall FScore KFold KFold SD

EEG 64.40 61.00 62.04 67.40 0.140
IMU 95.10 95.00 95.02 96.00 0.105
EMG 63.15 61.00 61.40 58.40 0.076
EEG/IMU 80.74 78.00 78.25 75.00 0.141

EEG/EMG 77.66 72.00 73.23 70.40 0.153
IMU/EMG 78.35 74.00 74.77 72.60 0.099
EEG/EMG/IMU 73.35 70.00 69.66 74.40 0.116

35

(a) EEG Data (b) IMU Data

(c) EMG Data (d) EEG, IMU Data

(e) EEG, EMG Data (f) IMU, EMG Data

(g) EEG, IMU, EMG Data

Figure 24: Support Vector Machines Confusion Matrices.
36

4.1.7 Neural Network

The code for training the MLP Neural Network can be seen in Figure 32 found in Appendix A.
After normalizing the data using StandardScalar() from the sklearn package in python, we
see that we used two layers of 100 nodes each, used the stochastic gradient-based optimizer
“adam” and set the learning rate to “adaptive” which means it will keep the learning rate
constant as long as training loss keeps decreasing. The learning rate will only be reduced
by 5 each time two consecutive epochs fail to decrease training loss or fail to increase the
validation score. In Table 7, we see that, although not the best performance out of all the
classifiers, the MLP Neural Network consistently achieves a precision of around 70% in all
cases. Overall, the KFold average accuracy is consistent with the single trained model results
which means the model is well generalized. We see the same story in Figure 25.

Table 7: Neural Network Results (in percentage)

Sensor/s Precision Recall FScore KFold KFold SD

EEG 66.46 64.00 64.08 62.40 0.136
IMU 77.27 77.00 76.68 83.60 0.072
EMG 57.72 58.00 57.14 57.00 0.060
EEG/IMU 69.04 67.00 66.72 67.60 0.109
EEG/EMG 77.48 77.00 76.80 74.20 0.090
IMU/EMG 68.85 66.00 64.69 74.20 0.073
EEG/EMG/IMU 77.52 77.00 76.87 73.40 0.074

37

(a) EEG Data (b) IMU Data

(c) EMG Data (d) EEG, IMU Data

(e) EEG, EMG Data (f) IMU, EMG Data

(g) EEG, IMU, EMG Data

Figure 25: Neural Network Confusion Matrices.
38

5 Results

After evaluating all the classifiers we see that Gradient Boosting Trees performs the best in
most paradigms as seen in Table 8. We also see that IMU data by itself, and paired with
any other type of data, is a very good predictor.

With 5 states available, random choice should give us a precision of about 20%. The
lowest precision recorded was only 34.96% using the EMG sensor with a Decision Tree
classifier which is still better than random. In fact, EMG data consistently yielded the
lowest precision across the board. However, when paired with the IMU sensor, it achieved
one of the highest precisions recorded as seen in Table 8.

Conversely, we see that the best results are obtained with IMU sensor by itself with
a precision of around 95.1%. This makes sense as this sensor is essentially mapping the
direction the user is looking at. We also see that pairing EEG data with IMU data can
marginally increases performance in all ensemble classifiers (AdaBoost, Random Forests,
Gradient Boosting).

Table 8: Results Overview: Precision (in percentage)

Classifier EEG IMU EMG EEG/IMU EEG/EMG IMU/EMG EEG/EMG/IMU

Logistic Regression 73.98 94.78 36.42 83.85 51.1 48.97 48.99
Decision Trees 41.53 69.67 34.96 61.37 57.27 71.53 64.65
AdaBoost 65.29 80.06 47.46 81.58 70.17 80.42 80.37
Random Forests 82.14 88.94 54.01 91.21 77.82 85.28 84.44
Gradient Boosting 79.96 89.3 63.45 93.34 84.46 95.12 94.41
SVM 64.4 95.1 63.15 80.74 77.66 78.35 73.35
Neural Network 66.46 75.00 57.72 69.04 77.48 68.85 77.52

To test whether the increase in performance when pairing IMU data and EEG data is
statistically significant, we can calculate the P-Values. Normally this would be done using
paired Student’s t-test, however KFold Cross Validation was used to evaluate the classifiers
which violates a key assumption of the paired Student’s t-test since the observations in each
sample are not independent. Thus, the non-parametric Wilcoxon signed-rank test [43] is used
instead. This is an equivalent of the paired Student T-test, however this test is specifically
geared towards comparing data samples which may be paired. An example of paired data
samples is when the same algorithm is evaluated on different datasets which is the case here.

39

Since we want to test for the performance of each classifier using different datasets, we use
the individual precision scores obtained from KFold Cross Validation in order to create a
distribution of results. Thus, we can compare IMU and EEG/IMU data with by using the
Wilcoxon signed-rank test and obtain the respective P-Values for each classifier as seen in
Table 9.

Table 9: P-Values for Ensemble Classifiers

Classifier P-Value

Adaboost 0.115
Random Forests 0.065
Gradient Boosting 0.717

The general accepted level for a distribution to be statistically significant is when the
P-Value is below 0.05. Based on these results, it appears that combining EEG and IMU
sensors does not yield statistically significant results over using data from the IMU sensor
by itself.

Taking the data from the IMU by itself into account, we see how each classifier per­
formed using K-Fold Cross validation in Table 10. Here, we can see the best classifiers are
SVM, Gradient Boosting and Logistic Regression with average precisions in the mid-nineties.
However, when taking the variance of the data into account, the best classifier for IMU data
alone is SVM as the standard deviation in both Logistic Regression and Gradient Boosting
could not account for the difference in performance of SVM.

Table 10: IMU Sensor Only Results (in percentage)

Classifier KFold KFold SD

Logistic Regression 94.40 0.040
Decision Trees 88.60 0.049
AdaBoost 74.80 0.106
Random Forests 63.40 0.052
Gradient Boosting 94.80 0.016
SVM 96.00 0.105
Neural Network 81.40 0.072

40

6 Discussion

In this experiment, we were able to successfully build a BCI that achieved significantly
higher-than-random precision. Both the Gradient Boosting classifier and Random Forests
were able to achieve a precision >70% for most cases. The only case in which this was
not consistently achieved was when using EMG data alone. No single classifier was able to
obtain a precision higher than 70% in this scenario.

The low precision using EMG data alone could be attributed to the fact that facial
expressions are not always consistent even if they do come from the same user. This could
also be attributed to the fact that the user was not instructed to follow any patterns with
their facial expressions so we were only able to obtain random involuntary face movements
that told us very little about the current state the user is in. However, we did see a case
in which EMG data enhanced the results when combined with IMU using the Gradient
Boosting classifier.

Several more patterns seem to emerge from the results, some which explain the EMG/IMU
case. On average, ensemble classifiers tend to do marginally better than the others, even
performing relatively well in cases where EMG data was included. This could be attributed
to the fact that they are using multiple classifiers to minimize bias and improve precision.
However, after obtaining the P-Values when comparing EEG and IMU data, it appears that
the small gains in performance are not statistically significant. Thus, it would seem that
using the IMU sensor by itself would be the better choice.

When specifically looking at the performance of each classifier using only the data
acquired from the IMU sensor, the best classifier seems to be SVM even when taking variances
in the data collected into account. Gradient Boosting and Logistic Regression follow closely
behind but fail to perform better even after considering variance in the data.

With these results, one could envision this BCI being a good candidate for multiple
scenarios. If a user has limited mobility below the chest area, they could still benefit from
using the IMU sensor. If the user wanted to use this BCI to enhance their control over a
motorized wheelchair, use of the IMU sensor might be limited but EEG sensors by themselves
could still prove helpful in such a case.

41

7 Conclusion and Future Work

7.1 Conclusion

This paper focused on testing and implementing a versatile BCI. Three different modes of
collecting data from a user were presented. All three were used by themselves, as well as
with different combinations in order to test for the best possible outcome.

Several machine learning classifiers as well as a neural network were selected and evalu­
ated. Their results with the given data were presented and discussed. At first glance, a few
patterns surfaced from the results presented. One of these patterns seems to indicate that
ensemble classifiers did better than others. However, further analysis of the results reveals
that the slight increase in performance using these classifiers occurs only when comparing
IMU data to EEG/IMU data.

Furthermore, when analysing the P-Values in these cases, it seems the increase in perfor­
mance is not statistically significant and data collected from the IMU sensor by itself would
suffice in building a functional BCI. In the case of only using data from the IMU sensor, the
classifier with the best performance seems to be SVM. Thus, using the data from the IMU
sensor paired with the SVM classifier seem yield the best performance.

The results of this paper also suggest that the proposed BCI could be successfully used
across different paradigms. Furthermore, the methodology presented would also suggest it
could lend itself well to real-time classification due to the limited computing power needed
to pre-process the data.

Some of the limitations of this paper include the limited number of subjects available
for data acquisition. This could imply the models are heavily overfitted to the small subject
pool. However, in real-world applications, a BCI such as the one proposed here would have
to be individually calibrated for each user.

7.2 Future Work

In the future, a larger subject pool would help generalize the method outlined in this paper
even more. It would also show how much calibration, either choosing different classifiers or

42

different parameters, would have to be done per individual in order to achieve the same level
of precision. If successful, this could be further implemented into a general purpose BCI [44].
Additionally, reducing the time interval for the batch of data captured would also allow the
implementation of a real-time BCI [45].

43

Appendix A Code

Code implementation of the machine learning techniques used in this paper can be found in
Figure 26 - Figure 32 listed below.

i print (” [INFO] evaluating logistic regression classifier...”)
2 clf = LogisticRegression (solver=”newton-cg” , multi_class=’auto ’ , n_jobs

=-1)
3 clf.fit(train_data , train_label)
4 clf_accuracy = clf.score(test_data , test_label)
5 clf_predictions = clf . predict(test_data)
6 print (”K- Fold Validation for”, classifier)
7 k_splits = 10
8 kf = StratifiedKFold (n_splits = k_splits , random_state=None)
9 result = cross_val_score(clf , data, labels, cv=kf , n_jobs=-1)

io print(”Avg accuracy: { :.2% } ”. format (res ult . mean ()))

Figure 26: Logistic Regression Code

i print(”\n\n[INFO] evaluating Decision Tree classifier...”)
2 clf = DecisionTreeClassifier (random_state=0, criterion=” entropy” ,

max-features=’auto ’ , splitter=’random ’)
3 clf.fit(train_data , train_label)
4 clf_accuracy = clf.score(test_data , test_label)
5 clf_predictions = clf . predict (test_data)
6 print (”K- Fold Validation for”, classifier)
7 k_splits = 10
8 kf = StratifiedKFold (n_splits = k_splits , random_state=None)
9 result = cross_val_score(clf , data, labels, cv=kf , n_jobs=-1)

io print(”Avg accuracy: { :.2% } ”. format (res ult . mean ()))

Figure 27: Decision Trees Code

i print(”\n\n[INFO] evaluating AdaBoost classifier...”)
2 clf = AdaBoostClassifier (n_estimators =200, random_state=0, algorithm=’

SAMME’)
3 clf.fit(train_data , train_label)
4 clf_accuracy = clf.score(test_data , test_label)
5 clf_predictions = clf . predict(test_data)
6 print (”K- Fold Validation for”, classifier)
7 k_splits = 10
8 kf = StratifiedKFold (n_splits = k_splits , random_state=None)
9 result = cross_val_score(clf , data, labels, cv=kf , n_jobs=-1)

io print(”Avg accuracy: { :.2% } ”. format (res ult . mean ()))

Figure 28: AdaBoost Code

i print (” \ n \ n[INFO] evaluating Random Forests classifier . . .”)
2 clf = RandomForestClassifier (n_estimators =100, bootstrap=True ,

max_features=’sqrt ’ , n_jobs=-1)
3 clf.fit(train_data , train_label)
4 clf_accuracy = clf.score(test_data , test_label)
5 clf_predictions = clf . predict(test_data)
6 print (”K- Fold Validation for”, classifier)
7 k_splits = 10
8 kf = StratifiedKFold (n_splits = k_splits , random_state=None)
9 result = cross_val_score (clf , data, labels, cv=kf , n_jobs=-1)

io print(”Avg accuracy: { :.2% } ”. format (res ult . mean ()))

Figure 29: Random Forests Code

45

i print(”\n\n[INFO] evaluating Gradient Boosting classifier ...”)
2 clf = GradientBoostingClassifier (n_estimators =100, learning_rate =1.0,

max_depth=1, random_state=0)
3 clf.fit(train_data , train_label)
4 clf_accuracy = clf.score(test_data , test_label)
5 clf_predictions = clf . predict(test_data)
6 print (”K- Fold Validation for”, classifier)
7 k_splits = 10
8 kf = StratifiedKFold (n_splits = k_splits , random_state=None)
9 result = cross_val_score(clf , data, labels, cv=kf , n_jobs=-1)

io print(”Avg accuracy: { :.2% } ”. format (res ult . mean ()))

Figure 30: Gradient Boosting Code

i print (” [INFO] evaluating SVM classifier .. . ”)
2 scalar = StandardScaler ()
3 scalar . fit (train_data)
4 X_train = scalar . transform (train_data)
5 X_test = scalar . transform (test_data)
6 clf = svm.SVC(C=4)
7 clf . fit (X_train , train_label)
8 clf_accuracy = clf . score (X_test , test_label)
9 clf_predictions = clf . predict (X_test)

io print (”K- Fold Validation for”, classifier)
ii scalar. f i t (data)
12 X_data = scalar . transform (data)
i3 k .splits = 10
i4 kf = StratifiedKFold (n_splits = k_splits , random_state=None)
is result = cross_val_score(clf , X_data , labels, cv=kf , n_jobs=-1)
i6 print(”Avg accuracy: {:.2% } ”. format (res ult . mean ()))

Figure 31: Support Vector Machines Code

46

i print(”\n\n[INFO] evaluating MLP classifier ...”)
2 scalar = StandardScaler ()
3 scalar . fit (train_data)
4 X_train = scalar . transform (train_data)
5 X_test = scalar . transform (test_data)
6 clf = MLPClassifier (activation=” relu” , hidden_layer_sizes =(100, 100),

learning_rate=” adaptive” , solver=”adam”)
7 clf . fit (X_train , train_label)
8 clf_accuracy = clf . score (X_test , test_label)
9 clf_predictions = clf . predict (X_test)

io print (”K- Fold Validation for”, classifier)
ii scalar. f i t (data)
12 X_data = scalar . transform (data)
13 k .splits = 10
14 kf = StratifiedKFold (n_splits = k_splits , random_state=None)
15 result = cross_val_score(clf , X_data , labels, cv=kf , n_jobs=-1)
16 print(”Avg accuracy: { :.2% } ”. format (res ult . mean ()))

Figure 32: Neural Network Code

47

References

[1] Ujwal Chaudhary, Natalie Mrachacz-Kersting, and Niels Birbaumer. Neuropsychologi­
cal and neurophysiological aspects of brain-computer-interface (BCI) control in paral­
ysis. The Journal of physiology, 2020.

[2] Reza Abiri, Soheil Borhani, Eric W Sellers, Yang Jiang, and Xiaopeng Zhao. A compre­

hensive review of EEG-based brain-computer interface paradigms, volume 16 of num­
ber 1. IOP Publishing, 2019, page 011001.

[3] J. Del R. Millan, F. Renkens, J. Mourino, and W. Gerstner. Noninvasive Brain-
Actuated Control of a Mobile Robot by Human EEG, volume 51 of number 6. 2004,
pages 1026-1033. dOi: . 10.1109/tbme.2004.827086

[4] Zhe Zhang. EEG Signal Processing and Analysis Using Efficient Machine Learning
Techniques. Master’s thesis, California State University Channel Islands, 2018.

[5] Atena Reyhani Shahrestani. Brain computer interfaces emotional state detection (EEG
pattern recognition). Master’s thesis, California State University Channel Islands, 2013.

[6] Tonio Ball, Markus Kern, Isabella Mutschler, Ad Aertsen, and Andreas Schulze-Bonhage.
Signal quality of simultaneously recorded invasive and non-invasive EEG. NeuroIm­
age, 46(3):708-716, 2009. issn: 1053-8119. doi:

. url:
.

 https : //doi . org/10 . 1016/j .
neuroimage . 2009 . 02 . 028 https : / /www . sciencedirect . com/ science /
article/pii/S1053811909001827

[7] Saba Moghimi MASc, Azadeh Kushki MASc PhD, Anne Marie Guerguerian MD FAAP
FRCPC, and Tom Chau MASc PhD. A Review of EEG-Based Brain-Computer In­
terfaces as Access Pathways for Individuals with Severe Disabilities. Assistive Tech­
nology, 25(2):99-110, 2013. doi: . eprint:

. url:
. PMID: 23923692.

 10 . 1080/10400435 . 2012 . 723298 https :
//doi .org/10 .1080/10400435.2012.723298 https://doi . org/10.1080/
10400435.2012.723298

[8] Luzheng Bi, Xin-An Fan, and Yili Liu. EEG-Based Brain-Controlled Mobile Robots:
A Survey. IEEE Transactions on Human-Machine Systems, 43(2):161-176, 2013. doi:

.10.1109/tsmcc.2012.2219046

[9] J Craig Henry. Electroencephalography: basic principles, clinical applications, and re­
lated fields. Neurology, 67(11):2092-2092, 2006.

48

https://doi.org/10.1109/tbme.2004.827086
https://doi.org/https://doi.org/10.1016/j.neuroimage.2009.02.028
https://doi.org/https://doi.org/10.1016/j.neuroimage.2009.02.028
https://www.sciencedirect.com/science/article/pii/S1053811909001827
https://www.sciencedirect.com/science/article/pii/S1053811909001827
https://doi.org/10.1080/10400435.2012.723298
https://doi.org/10.1080/10400435.2012.723298
https://doi.org/10.1080/10400435.2012.723298
https://doi.org/10.1080/10400435.2012.723298
https://doi.org/10.1080/10400435.2012.723298
https://doi.org/10.1109/tsmcc.2012.2219046

[10] L F Haas. Hans Berger (1873-1941), Richard Caton (1842-1926), and electroencephalog­
raphy. Journal of Neurology, Neurosurgery and Psychiatry, 74(1):9-9, 2003. dOi:

.
 10.

1136/jnnp.74.1.9

[11] Aatif M. Husain and Saurabh R. Sinha. Continuous EEG Monitoring Principles and
Practice. Springer International Publishing, 2018.

[12] Swati Vaid, Preeti Singh, and Chamandeep Kaur. EEG Signal Analysis for BCI In­
terface: A Review. 2015 Fifth International Conference on Advanced Computing Com­
munication Technologies, pages 143-147, 2015. doi: . 10.1109/ACCT.2015.72

[13] Siuly Siuly, Yan Li, and Yanchun Zhang. EEG signal analysis and classification. IEEE
Trans Neural Syst Rehabilit Eng, 11:141-144, 2016.

[14] D Gordon E Robertson, Graham E Caldwell, Joseph Hamill, Gary Kamen, and Saun­
ders Whittlesey. Research methods in biomechanics. Human kinetics, 2013.

[15] MBI Reaz, MS Hussain, and F Mohd-Yasin. Techniques of EMG signal analysis: de­
tection, processing, classification and applications (Correction). Biological procedures
online, 8(1):163-163, 2006.

[16] Sivakumar Balasubramanian, Eliana Garcia-Cossio, Niels Birbaumer, Etienne Burdet,
and Ander Ramos-Murguialday. Is EMG a Viable Alternative to BCI for Detecting
Movement Intention in Severe Stroke? IEEE Transactions on Biomedical Engineering,
65(12):2790-2797, 2018. doi: . 10.1109/TBME.2018.2817688

[17] Latest News. url:
(visited on 05/10/2021).

 https://csr.quadram.ac.uk/research/electromyography-of-
mastication/

[18] Marco Iosa, Pietro Picerno, Stefano Paolucci, and Giovanni Morone. Wearable inertial
sensors for human movement analysis. Expert review of medical devices, 13(7):641-659,
2016.

[19] Ping Li, Ramy Meziane, Martin J.-D. Otis, Hassan Ezzaidi, and Philippe Cardou.
A Smart Safety Helmet using IMU and EEG sensors for worker fatigue detection.
2014 IEEE International Symposium on Robotic and Sensors Environments (ROSE)
Proceedings, pages 55-60, 2014. doi: . 10.1109/ROSE.2014.6952983

[20] M Olinski, A Gronowicz, M Ceccarelli, and D Cafolla. Human Motion Characterization
Using Wireless Inertial Sensors, New Advances in Mechanisms, Mechanical Transmis­
sions and Robotics, pages 401-408. Springer, 2017.

[21] Raymond E. Wright. Logistic Regression, Reading and Understanding Multivariate
Statistics, pages 217-244. American Psychological Association, 1995.

49

https://doi.org/10.1136/jnnp.74.1.9
https://doi.org/10.1136/jnnp.74.1.9
https://doi.org/10.1109/ACCT.2015.72
https://doi.org/10.1109/TBME.2018.2817688
https://csr.quadram.ac.uk/research/electromyography-of-mastication/
https://csr.quadram.ac.uk/research/electromyography-of-mastication/
https://doi.org/10.1109/ROSE.2014.6952983

[22] Xindong Wu, Vipin Kumar, J Ross Quinlan, Joydeep Ghosh, Qiang Yang, Hiroshi Mo­
toda, Geoffrey J McLachlan, Angus Ng, Bing Liu, and S Yu Philip. Top 10 algorithms
in data mining. Knowledge and information systems, 14(1):1-37, 2008.

[23] Arvindpdmn Raam.raam. Decision Trees for Machine Learning, July 2020. url:
(visited on 05/10/2021).

 https:
//devopedia.org/decision-trees-for-machine-learning

[24] Trevor Hastie, Saharon Rosset, Ji Zhu, and Hui Zou. BCI adaboost. Statistics and its
Interface, 2(3):349-360, 2009.

[25] Nabeel H Al-A’araji, Safaa O Al-Mamory, and Ali H Al-Shakarchi. Classification and
Clustering Based Ensemble Techniques for Intrusion Detection Systems: A Survey.
Journal of Physics: Conference Series, volume 1818 of number 1, page 012106. IOP
Publishing, 2021.

[26] Tony Yiu. Understanding Random Forest, August 2019. url:
.

 https://miro.medium.
com/max/1052/1*VHDtVaDPNepRglIAv72BFg.jpeg

[27] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. Boosting and additive trees,
The elements of statistical learning, pages 337-387. Springer, 2009.

[28] GeeksforGeeks. ML - Gradient Boosting, September 2020. url: geeks.
(visited on 05/10/2021).

 https://www.geeksfor
org/ml-gradient-boosting/

[29] David Meyer and FH Technikum Wien. Support vector machines. The Interface to
libsvm in package e1071, 28, 2015.

[30] Rohith Gandhi. Support Vector Machine - Introduction to Machine Learning Algo­
rithms, July 2018. url:

(visited
on 05/10/2021).

 https : / / towardsdatascience . com / support - vector -
machine-introduction-to-machine-learning-algorithms-934a444fca47

[31] Matt W Gardner and SR Dorling. Artificial neural networks (the multilayer percep-
tron)—a review of applications in the atmospheric sciences. Atmospheric environment,
32(14-15):2627-2636, 1998.

[32] Hossein Hakimpoor, Khairil Anuar Bin Arshad, Huam Hon Tat, Naser Khani, and
Mohsen Rahmandoust. Artificial neural networks’ applications in management. World
Applied Sciences Journal, 14(7):1008-1019, 2011.

[33] Grant S Taylor and Christina Schmidt. Empirical evaluation of the Emotiv EPOC BCI
headset for the detection of mental actions. Proceedings of the Human Factors and
Ergonomics Society Annual Meeting, volume 56 of number 1, pages 193-197. SAGE
Publications Sage CA: Los Angeles, CA, 2012.

50

https://devopedia.org/decision-trees-for-machine-learning
https://devopedia.org/decision-trees-for-machine-learning
https://miro.medium.com/max/1052/1*VHDtVaDPNepRglIAv72BFg.jpeg
https://miro.medium.com/max/1052/1*VHDtVaDPNepRglIAv72BFg.jpeg
https://www.geeksforgeeks.org/ml-gradient-boosting/
https://www.geeksforgeeks.org/ml-gradient-boosting/
https://towardsdatascience.com/support-vector-machine-introduction-to-machine-learning-algorithms-934a444fca47
https://towardsdatascience.com/support-vector-machine-introduction-to-machine-learning-algorithms-934a444fca47

[34] EPOC Headset Details. url:
(visited on 05/10/2021).

 https : / / emotiv . gitbook . io/epoc-user-manual/
using-headset/epoc%20_headset_details

[35] EPOC User Manual. url:
(visited on 05/10/2021).

 https : / / emotiv . gitbook . io / epoc - user - manual/

[36] Sangeetha Balasubramanian, Shruti Shriya Gullapuram, and Abhinav Shukla. Engage­
ment estimation in advertisement videos with EEG. arXiv preprint arXiv:1812.03364,
2018.

[37] Petre Lameski, Eftim Zdravevski, Riste Mingov, and Andrea Kulakov. SVM parameter
tuning with grid search and its impact on reduction of model over-fitting, Rough sets,

fuzzy sets, data mining, and granular computing, pages 464-474. Springer, 2015.

[38] Daniel Berrar. Cross-validation. Encyclopedia of bioinformatics and computational bi­
ology, 1:542-545, 2019.

[39] Jun-Mo Jo. Effectiveness of normalization pre-processing of big data to the machine
learning performance. The Journal of the Korea institute of electronic communication
sciences, 14(3):547-552, 2019.

[40] Christopher M Bishop. Pattern recognition and machine learning. Springer, 2006.

[41] Trevor Hastie, Saharon Rosset, Robert Tibshirani, and Ji Zhu. The entire regular­
ization path for the support vector machine. Journal of Machine Learning Research,
5(Oct):1391-1415, 2004.

[42] Fabian Pedregosa, Gael Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand
Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent
Dubourg, et al. Scikit-learn: Machine learning in Python. The Journal of Machine
Learning Research, 12:2825-2830, 2011.

[43] Janez Demsar. Statistical comparisons of classifiers over multiple data sets. The Journal
of Machine Learning Research, 7:1-30, 2006.

[44] Gerwin Schalk, Dennis J McFarland, Thilo Hinterberger, Niels Birbaumer, and Jonathan
R Wolpaw. BCI2000: a general-purpose brain-computer interface (BCI) system. IEEE
Transactions on biomedical engineering, 51(6):1034-1043, 2004.

[45] Maria V Ruiz Blondet, Adarsha Badarinath, Chetan Khanna, and Zhanpeng Jin. A
wearable real-time BCI system based on mobile cloud computing. 2013 6th Interna­
tional IEEE/EMBS Conference on Neural Engineering (NER), pages 739-742. IEEE,
2013.

51

https://emotiv.gitbook.io/epoc-user-manual/using-headset/epoc%2520_headset_details
https://emotiv.gitbook.io/epoc-user-manual/using-headset/epoc%2520_headset_details
https://emotiv.gitbook.io/epoc-user-manual/

