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Combining EEG, EMG and IMU to build a functional 
Brain Computer Interface

Adan Sanchez

May 24, 2021

Abstract

A Brain-Computer Interface (BCI) is a direct connection between a computer and 
the brain - in this case, the human brain. Invasive BCIs tend to perform better as 
the amount of noise decreases when electrodes are placed under the scalp. However, 
placing the electrodes inside the skull increases the complexity of the device and risk 
to the user. Non-invasive BCIs are a viable alternative to this. Furthermore, the noise 
encountered when placing the device outside of the skull can be filtered out by modern 
machine learning algorithms. In this study, the EMOTIV Epoc+ headset, equipped 
with 14 surface electrodes and 2-axis motion sensors, was used to gather EEG, EMG 
and IMU data from a user. The machine learning algorithms tested were Logistic 
Regression, Decision Trees, Adaptive Boosting, Random Forests, Gradient Boosting 
Trees, Support Vector Machines and a Multilayer Perceptron Neural Network. Their 
performance is presented and directly compared along with different combinations of 
EEG, EMG, and IMU data being fed into them. Several viable combinations were 
discovered, some of which yielded accuracy of up to 95%. These results imply the 
implementation of a versatile BCI is feasible using machine learning algorithms and a 
consumer grade EGG headset.
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1 Introduction

1.1 Introduction to BCI

Human-computer interaction is concerned with the design and use of novel interfaces between 
people and computers. One specific instance of this is a Brain-Computer Interface (BCI), 
sometimes referred to as a neural-control interface (NCI) or mind-machine interface (MMI). 
This technology provides a direct link between an external device and the brain. Often, 
BCIs aim to provide biotechnological solutions for physical ailments, such as paralysis, by 
integrating the brain with assistive devices [1].

BCIs can be mostly categorized as invasive, partially invasive, and non-invasive. Invasive 
and partially invasive methods tend to require surgery in order to implant a device or part of 
a device into the user. This can create a great risk to the user and increase the complexity of 
working with the BCI. Presently, non-invasive BCIs tend to rely on electroencephalography 
(EEG) to acquire data from the user through wearable devices such as headbands or earbuds.

This paper seeks to test and implement a BCI that uses other sensors, such as inertial 
measurement units (IMU) or electromyograms (EMG), in conjunction with EEG in order to 
produce a more efficient BCI. An advantage of such an interface would be that it would be 
able to operate in multiple paradigms which would make it very versatile [2]. For example, 
this device could be easily adapted to meet the needs of someone who has limited use of 
their limbs but still has full control over the muscles around the neck and head. Machine 
learning algorithms can also be used in to minimize noise and normalize the process of data 
acquisition methods for different individuals [3] [4] [5]. It is for this purpose that the data 
collected in this experiment will be used to train a number of different machine learning 
algorithms.

Ideally, every machine learning algorithm should aim for 100% precision. Realistically, 
this is not possible even in the best of cases. Comparing proposed BCIs to each other can 
be challenging as well, as they do not all use the same data set or operate under the same 
conditions. Thus, in order to measure the feasibility of the BCI proposed in this paper we 
must first establish what it would take for it to be feasible.

In this context, feasibility means that the BCI would be precise, robust and able to be 
implemented under various circumstances. A precise BCI would achieve significantly higher- 
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than-random precision (>70%) precision. A robust BCI would mean an equally high recall 
as we want to minimize the number of misclassified states. Being able to be implemented 
under various circumstances would mean using the EEG sensor in conjunction with either 
EMG and/or IMU in order to achieve the desired results.

1.2 Challenges and Contributions

Obtaining meaningful data from the brain, noninvasively, can be challenging as different fac­
tors, such as skull thickness, hair density, different brains or even different eye movements, 
can produce noise which hinders the ability to produce clear, concise commands that a com­
puter can execute [6]. Additionally, many proposed BCIs target severely disabled individuals 
while using abled-body subjects to develop them [7] which can hinder their real-world ap­
plication. Even so, BCIs that purely rely on EEG have already been produced with limited 
results. In [8], we see how a number of existing BCIs rely on only one type of suitable brain 
signals. This can greatly reduce their usability as some users cannot produce the specific 
brain activity patterns required for these systems. Thus, the need for a BCI with greater 
usability in different paradigms arises.

The contribution of this paper is to provide methodologies for a BCI that is able to 
operate within different paradigms through the use of different sensors in addition to EEG 
in an effort to reduce the reliability on a single type of brain signal. Different machine 
learning algorithms and techniques are also evaluated in order to increase the efficacy of the 
BCI.

1.3 Paper Outline

The remainder of this paper is structured as follows: In Chapter 2, a brief overview of the 
different data collection techniques is given. Also provided in this chapter is an overview of 
the machine learning techniques used in this paper. Chapter 3 revolves around the data used 
in this paper. In this chapter, the data collection methods are discussed, an overview of the 
data set acquired is given and the pre-processing techniques used are presented. In Chapter 
4, the implementation of the machine learning algorithms is shown as well as the results in 
different paradigms with each algorithm. The overall results from the tests are discussed in 
Chapter 5 and the meaning of these results is explored in Chapter 6. A conclusion and a 
discussion of future work is given in Chapter 7.
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2 Background

2.1 Electroencephalogram (EEG)

Ionic current within the neurons of our brain result in voltage fluctuations. Although subtle, 
these can be measured through the use of the electrophysiological monitoring method known 
as electroencephalography [9]. Hans Berger, a German psychiatrist in the 20th century, was 
the first to record and analyze EEG signals from a human and the first to describe abnormal 
EEGs in neurological diseases [10]. He identified the oscillatory activity of these brain waves 
with devices for detecting small electric currents, first a string galvanometer and later a 
Siemens double-coil galvanometer [11]. Today’s EEG detectors are more advanced than the 
galvanometers used by Berger one hundred years ago. So much so in fact, that it is a leading 
method used in BCIs [12].

Figure 1: Example of EEG Headset [13]

2.2 Electromyograms (EMG)

Electromyography could most aptly be characterized as an electrodiagnostic medicine tech­
nique that measures electrical activity in response to a nerve’s stimulation of a muscle [14]. 
The term electromyography was first introduced by French scientist Etienne-Jules Marey in 
1890 [15]. However, experiments using EMG date back to 1666 when the first documented
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experiments on electric eels by Italian scientist Francesco Redi were conducted. In present 
day, specifically in Computer Science, we have used EMG as form of human-computer in­
teraction and has even been successfully used in some BCIs. In [16], we see that EMG can 
be viable for detecting movement intention, with 22/30 of their patients showing sufficient 
surface EMG in their finger/wrist extensor muscles. Although in this paper they developed 
an EMG signal detector without the use of machine learning, it proves that it can be suc­
cessfully used to detect movement intention in conjunction with EEG. In Figure 2, we can 
see an EMG device capturing muscle activity of superficial masseter and anterior temporalis 
bilaterally.

Figure 2: EMG Device [17]

2.3 Inertial Measurement Unit (IMU)

An inertial measurement unit is a device that can measure the specific force, angular rate 
and/or orientation of a body through the use accelerometers or gyroscopes [18]. What a 
specific IMU can measure and report varies by model but in general, they all serve to elec­
tronically provide a sense of spacial awareness. While often incorporated into navigational 
systems to calculate attitude, angular rates, linear velocity or even the position relative to a 
global reference frame, they also serve as orientation sensors in many other products. One 
of these use cases is in BCIs, often in conjunction with EEG. In [19], we see several success­
ful uses of IMUs, mostly with Kalman filter based algorithms, in order to classify/predict 
motions of a user. An example of one of an IMU device can be seen in Figure 3.
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Figure 3: IMU Device [20]

2.4 Machine Learning Techniques

Although relatively young, the machine learning field is rapidly growing. A great number of 
machine learning algorithms and their variations now exists. Far too many to test individ­
ually. Thus, a limited number had to be chosen. The algorithms seen here were chosen due 
to their robustness and widely available documentation.

2.4.1 Logistic Regression

Logistic regression, in its simplest form, is a statistical method that models a binary de­
pendent variable using a logistic function. This is often used to model the probability of a 
certain event or class existing, e.g. pass/fail, win/loose. Models with increased complexity 
can be extended to model multiple classes or events at a time [21]. In image recognition, 
such a method could be used to model the probability, between 0 and 1, of a certain object 
being in a given picture.
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An example of the logistic function,

f (x) = ------L------  (1)
1 + e-k(x-x0)

where L, the curve’s maximum value; k, the logistic growth rate or steepness of the curve; 
x0 ,thex value of the sigmoid’s midpoint, can be seen in Figure 4.

Figure 4: Standard logistic sigmoid function where L =1,k =1,x0 =0

However, multi-class classification means that there are more than two classes to classify. 
Thus, a One-vs-Rest (OvR) approach is used when implementing logistic regression. This 
approach splits the data set into multiple binary classification problems which allows a binary 
classifier to be trained for each problem created.

2.4.2 Decision Trees

A decision tree is a tree-like model which aims to predict the value of a target variable by 
learning simple decision rules inferred from the data features. In this case, a decision tree is 
used to classify different classes. A tree model will usually consist of internal nodes, which 
represent an attribute of the model, branches, which represent a test outcome and a leaf 
node which represents a class label. In decision tree learning, branches represent feature 
conjunctions which lead to class labels known as leaves. Most decision tree learners, such 
as the one used in this paper, are deterministic which means that given a fixed data set,
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they produce a tree with the same structure. An outline of a decision tree model can be 
seen in Figure 5. These models are quite popular in machine learning due to their relative 
simplicity and ease of implementation [22]. However, a disadvantage of decision trees is they 
could create over-complex trees that do not generalize data as well.

Figure 5: Decision Tree model outline [23]

2.4.3 AdaBoost

AdaBoost, or Adaptive Boosting, is what is known as a meta-estimator. It basically combines 
multiple weaker classifiers into a stronger one. A weak model is one which may perform better 
than random guessing but not by a lot. A feature of AdaBoost is that it can be applied on 
top of almost any given classifier in order to learn from the mistakes of the weaker model and 
provide a stronger model in the end. In this specific case, AdaBoost is paired with a model 
that specifically targets multi-class classification referred to as Stagewise Additive Modeling 
using a Multi-class exponential loss function or AdaBoost-SAMME for short. This model is 
outlined in section 1.2 of [24]. An overview of the AdaBoost method can be seen in Figure 6.
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Figure 6: AdaBoost method outline [25]

2.4.4 Random Forests

Random forests are an ensemble learning classification method. As the title implies, this 
method consists of a large number of individual decision trees. Each tree model, generally 
all with equal weight, produces a class prediction and the class with the most votes becomes 
the model used for a future prediction with each model. We can see an example of this in 
Figure 7. One of the main advantages of this method versus just using Decision Trees is 
that Random Forests can correct for overfitting which tends to occur in Decision Trees. An 
advantage of this method is that weaker models can be built concurrently and independently 
of others, thus speeding up training time.

Figure 7: Random Forests making a prediction [26]
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2.4.5 Gradient Boosting Trees

Gradient Boosting Trees or Gradient Boosting for short is another ensemble classification 
technique. This technique is essentially a version of Adaptive Boosting (2.4.3) where the 
weak classifier is a Decision Tree, hence the trees in its name. Boosting refers back to 
the idea of using a weaker classifier to build a stronger one [27]. This technique differs from 
Random Forests in two main areas: the way trees are built and the way results are combined. 
Gradient Boosting builds trees one at a time giving it the ability to correct errors made by 
previous trees. A weakness of this algorithm is that it can be easier to overfit than regular 
Random Forests. However, through careful tuning of parameters this can be avoided.

Figure 8: Gradient Boosting [28]

2.4.6 Support Vector Machines

Support Vector Machines (SVM) aim to distinctly classify N classes, or features, by finding 
a hyperplane in the N-dimensional plane [29]. Hyperplanes can be simply thought of as 
boundaries between classes as seen in Figure 10. In 2-dimensions, a hyperplane would simply 
be a line and in 3-dimensions it could be thought of as a plane. However, SVM allows us to 
extrapolate this concept to N -dimensions but it becomes difficult to visualize the hyperplane 
when N>3. Points closer to the hyperplane are referred to as the support vectors which 
help position and orient the hyperplane. As the margin between these points increases, we 
maximise the margin of our model.

In Figure 9, this can be conceptualized for 2D and 3D dimensions.
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Figure 9: Hyperplane visualized [30]

Figure 10: Hyperplane margin in SVM model [30]

2.4.7 Neural Networks

Neural Networks, formally known as Artificial Neural Networks, are sets of interconnected 
artificial neurons inspired by neurons in a brain. This term is an umbrella term that encom­
passes many types of neural networks. In this case, we will be using a Multilayer Perceptron 
(MLP) neural network which consists of at least three layers of nodes. These include an 
input layer, a hidden layer and an output layer, although more complex models can exist. 
MLPs generally achieve good generalisation of unseen data, specifically in cases where full 
theoretical models cannot be constructed [31]. This makes an MLP neural network a good 
candidate for this application.
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Figure 11: Outline of neural network [32]
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3 Experiment Set Up

3.1 Subjects

While conducting this research, a worldwide pandemic took place. This pandemic was 
caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV2). Given the nature 
of the virus, close proximity to others was extremely limited. As with almost everything 
at the time, this experiment was ultimately affected. Social distancing measures made the 
feasibility of obtaining data from a large pool of subjects impossible. Therefore, all data 
used in this experiment was collected from its author as that proved to be the safest and 
most ethical way of completing this research. The data was collected over a period of two 
months and consisted of 100 sessions. Each session lasted around 3 minutes.

3.2 Data Collection

The headset used in this experiment is the Emotiv Epoc+ as seen in Figure 12. This 
headset was chosen due to its relative low cost and level of accuracy at its price range [33]. 
The headset is equipped with 14 electrodes as well as a gyroscope. The location of which can 
be seen in Figure 13 and Figure 14. EEG electrode location can be placed on the following 
places: pre-frontal (Fp), frontal (F), temporal (T), parietal (P), occipital (O), central (C), 
and between Fp and F (AF). Their lateralized location is marked as follows: odd numbers 
(1,3,5,7) refer to electrodes placed on the left hemisphere, even numbers (2,4,6,8) refer to 
those on the right hemisphere.

Using these electrodes, the headset is able to capture 14-channel electroencephalography 
(EEG) data with a rate of up to 128 Hz. Additionally, it is also able to capture gyroscopic 
data in two axes (X and Y or left/right and up/down from the perspective of the user) 
at the same resolution. The location of this gyroscope can be found behind the Front 
Power/Charging Indicator as seen in Figure 12. Using triangulation, the headset is also able 
to generate electromyography (EMG) data at a resolution of 32 Hz. It is also able to capture 
alpha, low beta, high beta, gamma and theta bands at a resolution of 8 Hz using proprietary 
algorithms. For the purposes of this experiment, only raw EEG, raw gyroscopic data and 
EMG data will be used.
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Figure 12: Emotiv EPOC Headset [34]

Figure 13: EEG headset placement [35]
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Figure 14: Headset Sensor Mapping [36]

3.3 Methods

This experiment aims to test whether a discrete number of pre-determined actions can be 
predicted from the data collected from a user. In this case, there are 4 pre-determined actions 
that the user is instructed to perform. The actions consist of looking in a given direction 
(up, down, left, right) while simultaneously thinking of moving in that direction. The user 
is told to follow these instructions for given period of time in order to allow the headset to 
collect enough data to obtain an accurate state of mind (see Figure 15). Thirty seconds was 
chosen as the given time interval to collect data for each direction as a user could become 
distracted if they are not stimulated for long periods of time.
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(a) Start (b) Transition

(c) Right (d) Left

(e) Up (f ) Down

(g) End

Figure 15: Prompts displayed while capturing data.



While there are only 5 different actions we would like to segregate from the data col­
lected, there are in fact 6 total states the user can find themselves in during the data collection 
process. These include a baseline state, a transition state as well as the four different action 
states. The transition state is only there to ease the user’s transition from one state to 
another. It is discarded when processing the data for training. The process of collecting 
data begins when the user is sat in front of a computer screen while wearing the headset. 
After the user makes themselves comfortable in front of the screen, the process starts when 
a prompt displayed on the screen tells them to try and clear their minds for the next 30 
seconds.

After this, the first action prompt appears on screen telling them to look in the given 
direction while tilting their head so that they directly face the tip of the arrow displayed on 
screen. This is so that we may obtain the greatest amount of head movement so that the 
gyroscope sensor in the headset will be able to collect data. In order to keep the amount of 
rotation constant between runs and subjects, the size of screen should remain constant while 
collecting data. Before the next action is given, a 10 second transition slide is displayed 
on screen so that the user may be prepared for the next action. This is repeated 3 more 
times to total 180 seconds of data. We obtain approximately 128 data points of EEG and 
gyroscopic data per second and 32 points of EMG data per second. Each session, the order 
of the action prompts is randomized so that the user may not memorize a pattern and loose 
focus.

3.4 Data Analysis

3.4.1 EEG Data

We can visualize the data of a given session by plotting it over time. In Figure 16, we can see 
a time series representation for all 14 EEG channels where time on the X-axis is measured 
in seconds and the Y-axis is measured in microvolts. Here, 6 different states are labeled 
and separated by a dotted vertical line. Each line is labeled according to the location of the 
electrode in the head of the user as seen in Figure 14. This allows us to see certain patterns 
that occur within our data. For example, we tend to see relative big spikes whenever we 
move from one state to another.
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3.4.2 IMU Data

After graphing our 2 channels of IMU data (X and Y axis position), we see similar results 
in Figure 17. We also see big spikes when moving from one state to another.

Figure 17: IMU vs Time
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3.4.3 EMG Data

When graphing our EMG data, our graph looks different from the previous graphs. This is 
due to the fact that this data is a digital output of a triangulation algorithm rather than 
an analog reading of a sensor. Figure 18 shows the different types of outputs available. The 
readings of each output can be interpreted as follows:

1. BlinkWink

0 - Neutral state

1 - Blink

2 - Left Wink

3 - Right Wink

2. Horizontal Eyes

-1 - Eyes look left

0 - Eyes look forward

1 - Eyes look right

3. Upper Face

0 - Neutral state

1 - Action on left side of face

2 - Action on right side of face

4. Upper Face Power: Intensity of action taken normalized between 0 and 1.

5. Lower Face

0 - Neutral state

1 - Action on left side of face

2 - Action on right side of face

6. Lower Face Power: Intensity of action taken normalized between 0 and 1.
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Figure 18: EMG vs Time
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3.5 Data Pre-processing

The headset used in this experiment can, at its highest settings, produce 128 different samples 
of EEG data per second per electrode with a total of 14 electrodes. Additionally, each 
sample may additionally contain the IMU data and EMG data. We can easily see how a 
lot of data may be collected in a short amount of time. If we were to train a classifier with 
one set of samples at a time, the classifier would be making a decision every 1/128th of a 
second. Even with relative high accuracy, this many decisions in such a short amount of 
time could be problematic for real-world applications. Therefore, in an effort to reduce the 
computing power needed for pre-procession of the data, a batch learning method is used in 
this experiment as a form of dimensionality reduction. Instead of training with one sample 
at a time, a number of samples for a given time interval is given to the classifiers in a batch 
form. In our case, the given time interval is 30 seconds as that is how long the user is asked 
to concentrate on a specific direction.
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4 Classification

The tuning of hyperparameters is often be used to maximize the efficiency of a given classifier. 
This is the case for this experiment. For each classifier tested, their hyperparameters were 
tuned using a grid-search method. Although time intensive, this process has been proven to 
improve the performance of a classifier [37].

Cross validation is a group of statistical techniques that helps assess how the results of 
a statistical model will generalize. In this instance, K-fold cross-validation is used in order 
to help prevent overfitting in the trained models. In K-fold cross-validation, the dataset 
is split into K parts or “folds.” The model is then trained using K-1 subsets, leaving one 
remaining set as validation data. The accuracy of the model is then calculated by taking the 
average accuracy of all K subsets on the validation data [38]. Stratified random sampling is 
also often used with K-fold cross-validation as is the case here as well. This means that the 
sampling of the data is proportioned in such a way that the subsets reflect the proportion of 
the training set.

Some machine learning algorithms use the Euclidean distance to calculate distance be­
tween points. In these cases, it is important to normalize all features so as to not let one 
particular feature disproportionately affect calculated distances. The support vector ma­
chine and the multilayer perceptron neural network are affected by this phenomena, thus 
appropriate scaling techniques were used before training [39].

In machine learning, regularization is a technique used to better fit a function to a 
given training set and thus reducing error. It does this by constraining coefficient estimates 
towards zero, much like a form of regression [40]. This technique is sometimes used when 
trying to reduce or avoid overfitting. Regularization is used along with the support vector 
machine and neural network classifier presented here as it has shown it can improve efficiency 
[41].

To implement these methods, the scikit-learn [42] machine learning library in Python is 
extensively used.
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4.1 Evaluating Classifiers

Each of the 100 sessions recorded was split into 5 classes (Baseline, Left, Right, Up, Down). 
This meant the data set used for this experiment consisted of 500 total samples. This was 
split into 80% testing data and 20% validation data. Thus, making the input size for our 
classifiers 400 samples, leaving the remainder 100 samples for testing.

In order to evaluate each classifier properly, all combinations of sensor data were used 
to find the best possible performance. Data from the EEG sensor consists of 14 features as 
each electrode in the headset has an individual output. Data from the IMU sensor consists 
of 2 features, X-axis and Y-axis. Data from the EMG sensor consists of 6 different features. 
When combining any two or more of these sensors, the total input features is equal to the sum 
of their individual features. Using the batch pre-processing method described previously, the 
feature space for EEG data is 3835 x 14. Since the IMU collects data at the same rate, its 
input space is 3835 x 2 as we only have 2 features. Finally, EMG has an input space of 958 
x 6 as this data is collected at a slower rate.

In addition to K-fold cross validation, the standard deviation of the KFold average is 
also used in order to take into account the variability in the data when comparing the means. 
The classifiers are also evaluated by calculating precision, recall and F-Score. In order to 
calculate this, we must first define the following terms:

True Positives (TP) - Correctly predicted positive values where the value of the actual 
class and predicted class are the same.
False Positives (FP) — Incorrectly predicted positive values.
False Negatives (FN) - Incorrectly predicted negative values.

With these defined, we can then calculate the following:
Precision - The ratio of correctly predicted positive observations to the total predicted pos­
itive observations.

TP
Precision = TP + FP

Recall (Sensitivity) - The ratio of correctly predicted positive observations to the all obser-
vations in actual class.

Recall =
TP

TP + FN
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F-Score - The weighted average of Precision and Recall.

FScore = 2 x
Recall x Precision
Recall + Precision
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4.1.1 Logistic Regression

After careful hyperparameter tuning, the code for training the Logistic Regression classifier 
can be seen in Figure 26 found in Appendix A. An advantage of this classifier is that it can 
be trained in parallel mode which vastly speeds up training times. We can see the results 
in Table 1. From these we see that in the best of cases, it can outperform random using 
IMU data. In cases without IMU data, EEG by itself still performs well with a 73.98% 
precision. However, the model does lag behind in its KFold average precision with a 66.8%. 
This suggests this model might not be the best candidate for unseen data. In Figure 19a, 
we can see that it labeled a significant portion of Left and Right states as Down states.

Table 1: Logistic Regression Results (in percentage)

Sensor/s Precision Recall FScore KFold KFold SD

EEG 73.98 72.00 71.18 66.8 0.101
IMU 94.78 94.00 94.20 94.4 0.040
EMG 36.42 36.00 35.90 34.2 0.056
EEG/IMU 83.85 83.00 83.09 77.8 0.104
EEG/EMG 51.10 51.00 50.93 47.4 0.076
IMU/EMG 48.97 48.00 47.33 48.8 0.059
EEG/EMG/IMU 48.99 49.00 48.77 49.6 0.079
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(a) EEG Data (b) IMU Data

(c) EMG Data (d) EEG, IMU Data

(e) EEG, EMG Data (f) IMU, EMG Data

(g) EEG, IMU, EMG Data

Figure 19: Logistic Regression Confusion Matrices.



4.1.2 Decision Trees

The code for training the Decision Trees classifier can be seen in Figure 27. Referencing 
Table 2 found in Appendix A, we see that the Decisions Trees classifier, although better 
than random, was not the best classifier of the pack. The best precision was IMU once again 
but this time we only see it reach 69.67%. However, the KFold average precision remain 
consistent with single training sessions which means our model will generalize just as well. 
In Figure 20, we see that for the most part the incorrectly predicted classes are distributed 
somewhat evenly.

Table 2: Decision Trees Results (in percentage)

Sensor/s Precision Recall FScore KFold KFold SD

EEG 41.53 42.00 41.48 42.8 0.083
IMU 69.67 69.00 68.64 63.4 0.052
EMG 34.96 35.00 34.89 37.2 0.088
EEG/IMU 61.37 62.00 60.71 46.8 0.076
EEG/EMG 57.27 56.00 55.88 43.6 0.098
IMU/EMG 71.53 71.00 70.53 41.4 0.06
EEG/EMG/IMU 64.65 64.00 63.92 41.8 0.096
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(a) EEG Data (b) IMU Data

(c) EMG Data (d) EEG, IMU Data

(e) EEG, EMG Data (f) IMU, EMG Data

(g) EEG, IMU, EMG Data

Figure 20: Decision Trees Confusion Matrices.
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4.1.3 AdaBoost

For the most part, the only hyperparameter that seems to make the most difference in 
training the AdaBoost classifier is the number of estimators. As seen in Figure 28 found in 
Appendix A, an optimal number was chosen after using the GridSearch method. Overall, 
we see that this classifier shows significant improvements over that previous classifier as 
seen in Table 3. This classifier being an ensemble method could be a big contributor in the 
improvement of the results. We see that once again IMU data seems to provide the best 
precision, however, recall is not so great in this case. We can see why in Figure 21b as half 
of the Down states were incorrectly classified as Up states.

Table 3: AdaBoost Results (in percentage)

Sensor/s Precision Recall FScore KFold KFold SD

EEG 65.29 64.00 64.01 72.00 0.067
IMU 80.06 70.00 70.3 74.80 0.106
EMG 47.46 41.00 41.33 45.60 0.119
EEG/IMU 81.58 79.00 78.83 80.60 0.056
EEG/EMG 70.17 67.00 66.71 68.40 0.074
IMU/EMG 80.42 72.00 73.00 73.80 0.073
EEG/EMG/IMU 80.37 79.00 79.37 81.80 0.043
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(a) EEG Data (b) IMU Data

(c) EMG Data (d) EEG, IMU Data

(e) EEG, EMG Data (f) IMU, EMG Data

(g) EEG, IMU, EMG Data

Figure 21: AdaBoost Confusion Matrices.
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4.1.4 Random Forests

Random forests is another ensemble algorithm and the code used for training it can be seen 
in Figure 29 found in Appendix A. As the results in Table 4 indicate, this is one the best 
classifiers thus far. The lowest precision reported is with EMG data at 54.01%. This is 
still over double that of random. IMU data by itself still provides a respectable precision of 
88.94%. Surprisingly, the best precision is reported to be the one with EEG and IMU data 
combined at 91.21%. Overall, precision and recall were pretty even along with the KFold 
average precision which means these models are very robust and well generalized. This is 
further reflected in Figure 22.

Table 4: Random Forests Results (in percentage)

Sensor/s Precision Recall FScore KFold KFold SD

EEG 82.14 82.00 81.70 79.20 0.066
IMU 88.94 87.00 86.78 88.60 0.049
EMG 54.01 53.00 52.26 53.00 0.103
EEG/IMU 91.21 91.00 90.99 87.20 0.056
EEG/EMG 77.82 78.00 77.46 81.20 0.095
IMU/EMG 85.28 85.00 84.79 88.00 0.039
EEG/EMG/IMU 84.44 84.00 83.97 87.00 0.043
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(a) EEG Data (b) IMU Data

(c) EMG Data (d) EEG, IMU Data

(e) EEG, EMG Data (f) IMU, EMG Data

(g) EEG, IMU, EMG Data

Figure 22: Random Forests Confusion Matrices.
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4.1.5 Gradient Boosting Trees

The code used for training Gradient Boosting Trees, our last ensemble classifier, can be seen 
in Figure 30 found in Appendix A. With this classifier, the highest scores are achieved when 
combining either EEG, EMG, IMU or all of them. In fact, this classifier seems to yield the 
best results thus far. In Table 5, we can see that we obtain a result higher than 70% in most 
cases. KFold tells us once more that these models will do relatively well with unseen data. 
The confusion matrices seen in Figure 23 tell a similar story.

Table 5: Gradient Boosting Results (in percentage)

Sensor/s Precision Recall FScore KFold KFold SD

EEG 79.96 79.00 79.04 78.19 0.089
IMU 89.30 89.00 89.06 94.80 0.016
EMG 63.45 63.00 62.83 59.00 0.057
EEG/IMU 93.34 93.00 93.01 93.80 0.052
EEG/EMG 84.46 84.00 83.68 78.20 0.080
IMU/EMG 95.12 95.00 94.97 95.20 0.026
EEG/EMG/IMU 94.41 94.00 94.06 95.60 0.035
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(a) EEG Data (b) IMU Data

(c) EMG Data (d) EEG, IMU Data

(e) EEG, EMG Data (f) IMU, EMG Data

(g) EEG, IMU, EMG Data

Figure 23: Gradient Boosting Confusion Matrices.



4.1.6 Support Vector Machines

The code for training the Support Vector Machines classifier can be seen in Figure 31 found 
in Appendix A. Here we can also see data being normalized using the StandardScalar() 
from sklearn package in python. Additionally, we can also see regularization being used with 
the C parameter. In Table 6 we see that in some cases, such as that of IMU data, SVM 
performed much better than a large portion of the classifiers with a precision of 95.10%. 
However, it did not perform as well in other cases - specifically those without IMU data. 
SVM operates by using the distance between points, it makes sense that it tends to do better 
in cases where IMU data is present since IMU data is a map of where the user has been. 
Overall, it still performed reasonably well as seen in Figure 24.

Table 6: Support Vector Machines Results (in percentage)

Sensor/s Precision Recall FScore KFold KFold SD

EEG 64.40 61.00 62.04 67.40 0.140
IMU 95.10 95.00 95.02 96.00 0.105
EMG 63.15 61.00 61.40 58.40 0.076
EEG/IMU 80.74 78.00 78.25 75.00 0.141

EEG/EMG 77.66 72.00 73.23 70.40 0.153
IMU/EMG 78.35 74.00 74.77 72.60 0.099
EEG/EMG/IMU 73.35 70.00 69.66 74.40 0.116
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(a) EEG Data (b) IMU Data

(c) EMG Data (d) EEG, IMU Data

(e) EEG, EMG Data (f) IMU, EMG Data

(g) EEG, IMU, EMG Data

Figure 24: Support Vector Machines Confusion Matrices.
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4.1.7 Neural Network

The code for training the MLP Neural Network can be seen in Figure 32 found in Appendix A. 
After normalizing the data using StandardScalar() from the sklearn package in python, we 
see that we used two layers of 100 nodes each, used the stochastic gradient-based optimizer 
“adam” and set the learning rate to “adaptive” which means it will keep the learning rate 
constant as long as training loss keeps decreasing. The learning rate will only be reduced 
by 5 each time two consecutive epochs fail to decrease training loss or fail to increase the 
validation score. In Table 7, we see that, although not the best performance out of all the 
classifiers, the MLP Neural Network consistently achieves a precision of around 70% in all 
cases. Overall, the KFold average accuracy is consistent with the single trained model results 
which means the model is well generalized. We see the same story in Figure 25.

Table 7: Neural Network Results (in percentage)

Sensor/s Precision Recall FScore KFold KFold SD

EEG 66.46 64.00 64.08 62.40 0.136
IMU 77.27 77.00 76.68 83.60 0.072
EMG 57.72 58.00 57.14 57.00 0.060
EEG/IMU 69.04 67.00 66.72 67.60 0.109
EEG/EMG 77.48 77.00 76.80 74.20 0.090
IMU/EMG 68.85 66.00 64.69 74.20 0.073
EEG/EMG/IMU 77.52 77.00 76.87 73.40 0.074
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(a) EEG Data (b) IMU Data

(c) EMG Data (d) EEG, IMU Data

(e) EEG, EMG Data (f) IMU, EMG Data

(g) EEG, IMU, EMG Data

Figure 25: Neural Network Confusion Matrices.
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5 Results

After evaluating all the classifiers we see that Gradient Boosting Trees performs the best in 
most paradigms as seen in Table 8. We also see that IMU data by itself, and paired with 
any other type of data, is a very good predictor.

With 5 states available, random choice should give us a precision of about 20%. The 
lowest precision recorded was only 34.96% using the EMG sensor with a Decision Tree 
classifier which is still better than random. In fact, EMG data consistently yielded the 
lowest precision across the board. However, when paired with the IMU sensor, it achieved 
one of the highest precisions recorded as seen in Table 8.

Conversely, we see that the best results are obtained with IMU sensor by itself with 
a precision of around 95.1%. This makes sense as this sensor is essentially mapping the 
direction the user is looking at. We also see that pairing EEG data with IMU data can 
marginally increases performance in all ensemble classifiers (AdaBoost, Random Forests, 
Gradient Boosting).

Table 8: Results Overview: Precision (in percentage)

Classifier EEG IMU EMG EEG/IMU EEG/EMG IMU/EMG EEG/EMG/IMU

Logistic Regression 73.98 94.78 36.42 83.85 51.1 48.97 48.99
Decision Trees 41.53 69.67 34.96 61.37 57.27 71.53 64.65
AdaBoost 65.29 80.06 47.46 81.58 70.17 80.42 80.37
Random Forests 82.14 88.94 54.01 91.21 77.82 85.28 84.44
Gradient Boosting 79.96 89.3 63.45 93.34 84.46 95.12 94.41
SVM 64.4 95.1 63.15 80.74 77.66 78.35 73.35
Neural Network 66.46 75.00 57.72 69.04 77.48 68.85 77.52

To test whether the increase in performance when pairing IMU data and EEG data is 
statistically significant, we can calculate the P-Values. Normally this would be done using 
paired Student’s t-test, however KFold Cross Validation was used to evaluate the classifiers 
which violates a key assumption of the paired Student’s t-test since the observations in each 
sample are not independent. Thus, the non-parametric Wilcoxon signed-rank test [43] is used 
instead. This is an equivalent of the paired Student T-test, however this test is specifically 
geared towards comparing data samples which may be paired. An example of paired data 
samples is when the same algorithm is evaluated on different datasets which is the case here.
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Since we want to test for the performance of each classifier using different datasets, we use 
the individual precision scores obtained from KFold Cross Validation in order to create a 
distribution of results. Thus, we can compare IMU and EEG/IMU data with by using the 
Wilcoxon signed-rank test and obtain the respective P-Values for each classifier as seen in 
Table 9.

Table 9: P-Values for Ensemble Classifiers

Classifier P-Value

Adaboost 0.115
Random Forests 0.065
Gradient Boosting 0.717

The general accepted level for a distribution to be statistically significant is when the 
P-Value is below 0.05. Based on these results, it appears that combining EEG and IMU 
sensors does not yield statistically significant results over using data from the IMU sensor 
by itself.

Taking the data from the IMU by itself into account, we see how each classifier per­
formed using K-Fold Cross validation in Table 10. Here, we can see the best classifiers are 
SVM, Gradient Boosting and Logistic Regression with average precisions in the mid-nineties. 
However, when taking the variance of the data into account, the best classifier for IMU data 
alone is SVM as the standard deviation in both Logistic Regression and Gradient Boosting 
could not account for the difference in performance of SVM.

Table 10: IMU Sensor Only Results (in percentage)

Classifier KFold KFold SD

Logistic Regression 94.40 0.040
Decision Trees 88.60 0.049
AdaBoost 74.80 0.106
Random Forests 63.40 0.052
Gradient Boosting 94.80 0.016
SVM 96.00 0.105
Neural Network 81.40 0.072
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6 Discussion

In this experiment, we were able to successfully build a BCI that achieved significantly 
higher-than-random precision. Both the Gradient Boosting classifier and Random Forests 
were able to achieve a precision >70% for most cases. The only case in which this was 
not consistently achieved was when using EMG data alone. No single classifier was able to 
obtain a precision higher than 70% in this scenario.

The low precision using EMG data alone could be attributed to the fact that facial 
expressions are not always consistent even if they do come from the same user. This could 
also be attributed to the fact that the user was not instructed to follow any patterns with 
their facial expressions so we were only able to obtain random involuntary face movements 
that told us very little about the current state the user is in. However, we did see a case 
in which EMG data enhanced the results when combined with IMU using the Gradient 
Boosting classifier.

Several more patterns seem to emerge from the results, some which explain the EMG/IMU 
case. On average, ensemble classifiers tend to do marginally better than the others, even 
performing relatively well in cases where EMG data was included. This could be attributed 
to the fact that they are using multiple classifiers to minimize bias and improve precision. 
However, after obtaining the P-Values when comparing EEG and IMU data, it appears that 
the small gains in performance are not statistically significant. Thus, it would seem that 
using the IMU sensor by itself would be the better choice.

When specifically looking at the performance of each classifier using only the data 
acquired from the IMU sensor, the best classifier seems to be SVM even when taking variances 
in the data collected into account. Gradient Boosting and Logistic Regression follow closely 
behind but fail to perform better even after considering variance in the data.

With these results, one could envision this BCI being a good candidate for multiple 
scenarios. If a user has limited mobility below the chest area, they could still benefit from 
using the IMU sensor. If the user wanted to use this BCI to enhance their control over a 
motorized wheelchair, use of the IMU sensor might be limited but EEG sensors by themselves 
could still prove helpful in such a case.
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7 Conclusion and Future Work

7.1 Conclusion

This paper focused on testing and implementing a versatile BCI. Three different modes of 
collecting data from a user were presented. All three were used by themselves, as well as 
with different combinations in order to test for the best possible outcome.

Several machine learning classifiers as well as a neural network were selected and evalu­
ated. Their results with the given data were presented and discussed. At first glance, a few 
patterns surfaced from the results presented. One of these patterns seems to indicate that 
ensemble classifiers did better than others. However, further analysis of the results reveals 
that the slight increase in performance using these classifiers occurs only when comparing 
IMU data to EEG/IMU data.

Furthermore, when analysing the P-Values in these cases, it seems the increase in perfor­
mance is not statistically significant and data collected from the IMU sensor by itself would 
suffice in building a functional BCI. In the case of only using data from the IMU sensor, the 
classifier with the best performance seems to be SVM. Thus, using the data from the IMU 
sensor paired with the SVM classifier seem yield the best performance.

The results of this paper also suggest that the proposed BCI could be successfully used 
across different paradigms. Furthermore, the methodology presented would also suggest it 
could lend itself well to real-time classification due to the limited computing power needed 
to pre-process the data.

Some of the limitations of this paper include the limited number of subjects available 
for data acquisition. This could imply the models are heavily overfitted to the small subject 
pool. However, in real-world applications, a BCI such as the one proposed here would have 
to be individually calibrated for each user.

7.2 Future Work

In the future, a larger subject pool would help generalize the method outlined in this paper 
even more. It would also show how much calibration, either choosing different classifiers or 
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different parameters, would have to be done per individual in order to achieve the same level 
of precision. If successful, this could be further implemented into a general purpose BCI [44]. 
Additionally, reducing the time interval for the batch of data captured would also allow the 
implementation of a real-time BCI [45].
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Appendix A Code

Code implementation of the machine learning techniques used in this paper can be found in 
Figure 26 - Figure 32 listed below.

i print (” [INFO] evaluating logistic regression classifier...”)
2 clf = LogisticRegression ( solver=”newton-cg” , multi_class=’auto ’ , n_jobs 

=-1)
3 clf.fit(train_data , train_label)
4 clf_accuracy = clf.score(test_data , test_label)
5 clf_predictions = clf . predict(test_data )
6 print (”K- Fold Validation for”, classifier)
7 k_splits = 10
8 kf = StratifiedKFold ( n_splits = k_splits , random_state=None)
9 result = cross_val_score(clf , data, labels, cv=kf , n_jobs=-1)

io print(”Avg accuracy: { :.2% } ”. format ( res ult . mean ()))

Figure 26: Logistic Regression Code

i print(”\n\n[INFO] evaluating Decision Tree classifier...”)
2 clf = DecisionTreeClassifier (random_state=0, criterion=” entropy” , 

max-features=’auto ’ , splitter=’random ’)
3 clf.fit(train_data , train_label)
4 clf_accuracy = clf.score(test_data , test_label)
5 clf_predictions = clf . predict (test_data )
6 print (”K- Fold Validation for”, classifier)
7 k_splits = 10
8 kf = StratifiedKFold ( n_splits = k_splits , random_state=None)
9 result = cross_val_score(clf , data, labels, cv=kf , n_jobs=-1)

io print(”Avg accuracy: { :.2% } ”. format ( res ult . mean ()))

Figure 27: Decision Trees Code



i print(”\n\n[INFO] evaluating AdaBoost classifier...”)
2 clf = AdaBoostClassifier ( n_estimators =200, random_state=0, algorithm=’ 

SAMME’)
3 clf.fit(train_data , train_label)
4 clf_accuracy = clf.score(test_data , test_label)
5 clf_predictions = clf . predict(test_data )
6 print (”K- Fold Validation for”, classifier)
7 k_splits = 10
8 kf = StratifiedKFold ( n_splits = k_splits , random_state=None)
9 result = cross_val_score(clf , data, labels, cv=kf , n_jobs=-1)

io print(”Avg accuracy: { :.2% } ”. format ( res ult . mean ()))

Figure 28: AdaBoost Code

i print (” \ n \ n[INFO] evaluating Random Forests classifier . . .”)
2 clf = RandomForestClassifier ( n_estimators =100, bootstrap=True , 

max_features=’sqrt ’ , n_jobs=-1)
3 clf.fit(train_data , train_label)
4 clf_accuracy = clf.score(test_data , test_label)
5 clf_predictions = clf . predict(test_data )
6 print (”K- Fold Validation for”, classifier)
7 k_splits = 10
8 kf = StratifiedKFold ( n_splits = k_splits , random_state=None)
9 result = cross_val_score ( clf , data, labels, cv=kf , n_jobs=-1)

io print(”Avg accuracy: { :.2% } ”. format ( res ult . mean ()))

Figure 29: Random Forests Code
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i print(”\n\n[INFO] evaluating Gradient Boosting classifier ...”)
2 clf = GradientBoostingClassifier ( n_estimators =100, learning_rate =1.0, 

max_depth=1, random_state=0)
3 clf.fit(train_data , train_label)
4 clf_accuracy = clf.score(test_data , test_label)
5 clf_predictions = clf . predict(test_data )
6 print (”K- Fold Validation for”, classifier)
7 k_splits = 10
8 kf = StratifiedKFold ( n_splits = k_splits , random_state=None)
9 result = cross_val_score(clf , data, labels, cv=kf , n_jobs=-1)

io print(”Avg accuracy: { :.2% } ”. format ( res ult . mean ()))

Figure 30: Gradient Boosting Code

i print (” [INFO] evaluating SVM classifier .. . ” )
2 scalar = StandardScaler ()
3 scalar . fit (train_data )
4 X_train = scalar . transform (train_data )
5 X_test = scalar . transform (test_data )
6 clf = svm.SVC(C=4)
7 clf . fit (X_train , train_label)
8 clf_accuracy = clf . score ( X_test , test_label)
9 clf_predictions = clf . predict ( X_test)

io print (”K- Fold Validation for”, classifier)
ii scalar. f i t (data)
12 X_data = scalar . transform (data)
i3 k .splits = 10
i4 kf = StratifiedKFold ( n_splits = k_splits , random_state=None)
is result = cross_val_score(clf , X_data , labels, cv=kf , n_jobs=-1)
i6 print(”Avg accuracy: {:.2% } ”. format ( res ult . mean ()))

Figure 31: Support Vector Machines Code
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i print(”\n\n[INFO] evaluating MLP classifier ...”)
2 scalar = StandardScaler ()
3 scalar . fit (train_data )
4 X_train = scalar . transform (train_data )
5 X_test = scalar . transform (test_data )
6 clf = MLPClassifier ( activation=” relu” , hidden_layer_sizes =(100, 100), 

learning_rate=” adaptive” , solver=”adam”)
7 clf . fit (X_train , train_label)
8 clf_accuracy = clf . score ( X_test , test_label)
9 clf_predictions = clf . predict ( X_test)

io print (”K- Fold Validation for”, classifier)
ii scalar. f i t (data)
12 X_data = scalar . transform (data)
13 k .splits = 10
14 kf = StratifiedKFold ( n_splits = k_splits , random_state=None)
15 result = cross_val_score(clf , X_data , labels, cv=kf , n_jobs=-1)
16 print(”Avg accuracy: { :.2% } ”. format ( res ult . mean ()))

Figure 32: Neural Network Code
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