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Abstract—In central place foraging tasks, multiple robots
search for and gather resources in an environment. The robots
then proceed to deposit the collected resources in a single
central location. The performance of central place foraging
approaches is reduced due to congestion around the central
collection point. The congestion problem is made worse in the
case where resources are distributed in clusters whereby several
robots collect resources in the same area and deliver those
resources to the collection point along the same path. The
approach proposed here seeks to alleviate this congestion problem
through simple path planning strategies that reduce the number
of inter-robot collisions. Path Planning And Collision Avoidance
Algorithm For Clustered Central Place Foraging (PPCA-CCPFA)
addresses congestion by detecting possible inter-robot collisions
and finding alternate collision free paths for each robot. We
compare our approach to the Distributed Deterministic Spiral
Search Algorithm (DDSA). This approach provides a notable
increase in the performance of DDSA in cases where resources are
distributed in a single cluster. A simulation study was conducted
using the swarm robotics simulation tool ARGoS to measure
the effectiveness of the proposed approach as measured by the
number of resources collected per unit time and by the number
of inter-robot collisions per unit time.

Index Terms—swarms, cooperating robots, planning, schedul-
ing and coordination, collision avoidance, path planning for
multiple mobile robots or agents

I. INTRODUCTION

The research area of swarm robotics seeks to create robust
and complex group behaviors through the use of many simple
autonomous individual agents combined in large groups called
swarms [1], [2]. The promise of swarm robotics is that a large
swarm of inexpensive robots offer advantages over a single
expensive robotic in terms of performance, robustness, flexibil-
ity, and scalability [3]. Central Place Foraging, a subproblem
of Swarm Robotics, is gaining attention due to applications
such as planetary exploration [4], mining, and land mine
detection [5]. In particular, the National Aeronautics and Space
Administration (NASA) is interested in using swarms of rovers
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to explore other planets such as Mars in search of ice for in
situ resource utilization [4].

Spiral search patterns for foraging are studied extensively
and have been found to provide desirable performance [6]-
[8]. They guarantee collection of nearest targets first, and
they have complete coverage of the area with minimum
sampling [7]. The Distributed Deterministic Spiral Search
Algorithm (DDSA) generalizes a single robot square spiral
to any number of robots [7]. Ryan and Hedrick proposed a
square search pattern for fixed-wing unmanned aerial vehicle
(UAV) for searching water targets which is similar to DDSA
[9]. Other similar approaches use parallel searching in the
plane with a fixed number of robots [10], use a distributed
spiral search algorithm for the odor localization problem as
observed in ants [11], [12], or use a search pattern consisting
of system of loops of ever increasing size centered about the
origin with path integration as observed in Cataglyphis ants
[13]. Others perform a spiral search by equally partitioning
the environment among multiple robots [14], use a circular
distributed spiral search for multiple robots whose movements
are coordinated using shared data structure [15], or use a
deterministic interlocking spiral starting from a common point
for multiple agents searching targets in coordination [16].

In Central Place Foraging, robots search for resources in
the environment. When a new resource is discovered the robot
returns to the nest to deposit the found resource and resumes
the search pattern once the collected resource is deposited.
When robots leave their search pattern and go towards the
nest or vice versa, there may be cases where multiple robot
paths intersect or are collinear. Typical approaches to central
place foraging utilize reactive inter robot collision avoidance
wherein robots slightly turn off their course to avoid each
other and retry to get on their original course. This has been
found to increase the time required to collect resources by the
robot swarm [7]. In both the DDSA [7] and CPFA [17], [18]
papers, targets were collected faster in the uniform resource



distribution than in the clustered resource distribution. This
can be due to the unequal allocation of targets to the robots
and increased collisions between the robots. This observation
inspires the focus of this work on collision avoidance for
clustered resource distributions.

While designing distributed foraging algorithms for multiple
robot systems, interference can be considered a pragmatic
tool for evaluating the performance of these algorithms. The
mathematical formulation for multi-robot task allocation with
deadlines considering the effect of interference is formulated
in [19]. The research models interference as a linear func-
tion and studies how interference affects the performance of
task allocation in multiple robots. The optimal solution is
obtained by solving the linear integration function. Similarly,
[20] presents a mathematical model of homogeneous foraging
robots with the goal of understanding the effects of inter-
robot collision on their performance. The paper studies two
foraging cases. The first case, where homogeneous robots only
collect objects, and the second case where the homogeneous
robots find and deposit the object at a predefined “home”
location. It is observed that in the first case, the foraging
performance improves with the swarm size. In the second
case, it is found that the performance is maximized for an
optimal swarm size. Above the optimal swarm size inter-robot
collision causes the individual robot’s performance to be a
monotonically decreasing function of swarm size.

The most similar approach to the proposed approach is in
[21]. In this paper a “holding pattern” is used for depositing
the detected target to the “nest” location. This is similar to
the idea used at airports to avoid congestion and collision of
the airplanes. If the robots collect the resource from the same
cluster and are close to each other, they take turns to go to
the “home” location instead of all going together. The robots
pick up a closest of four points around the “home” location
forming larger triangular paths resulting in lesser collisions.

In this work, path planning and collision avoidance is
integrated with an existing central place foraging algorithm,
DDSA, to improve its performance. The main contributions
of this paper are two-fold:

1) Develop a path planning and collision avoidance tech-
nique for a multi-robot system. This helps reduce the
physical interference of robots with coincident paths
using spatial delay and intersecting paths by adding time
delay.

2) Evaluate the performance of the multi-robot foraging
system in terms of target collection rate and average
collision rate using the ARGoS swarm simulator.

The remainder of this paper is organized as follows. In
Section 2, the problem of congestion in central place foraging
is described. The method for multi-robot path planning and
collision avoidance for clustered resource distribution problem
is presented in Section 3. Section 4 describes the simulation
tests used to compare the results of the proposed algorithm
with that of DDSA. The results of these tests are discussed in
Section 5, which is followed by some final conclusions and
directions for future work in Section 6.
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II. PROBLEM STATEMENT

The central place foraging task consists of multiple agents
searching for desired targets in an unexplored environment
and depositing the found targets at a central “home” location.
Analysis, understanding, and evaluation of foraging tasks can
be efficiently carried out by focusing on a single behavior or
combination of behaviors. The motivation of this work is to
focus on path planning and collision avoidance for the multi-
robot central place foraging task.

Resources can be distributed spatially and temporally [22].
Resource distribution can be uniform, clustered, or partially
clustered. Usually the resources found are clumped in varying
sizes. The distribution of the resources affect the performance
of multi-robot central place foraging tasks. When the resources
are uniformly distributed, all the robots benefit. However, if
the resources are distributed in clumped patches, robots spend
a great amount of time avoiding physical interference near the
central “home” location and the clumped resource. The effect
of interference is proportional to the swarm size. Thus, there
is a need of path planning and collision avoidance technique
to reduce the inter-robot collision and lower the time expense
on the collision avoidance. This paper focuses on developing
a path planning and collision avoidance method for a robot
swarm collecting resources from a cluster and depositing them
at the central depot as resources are usually found in clumps.

Given a swarm size R, the robots have to search the space
for resources and deposit the collected resources at a central
depot. There are chances of collisions when more than one
robot travels from the nest location to the search position or
vice versa. The colliding robots can be in the same, different or
opposite direction. The collisions can be avoided by adjusting
the robot speeds, adding a time delay or choosing an alternate
path. The possibility of collision exists when robot paths
intersect at a particular point called intersection point or when
robot paths are coincident and there are multiple points of
collision. Figure 1 depicts the above mentioned cases.

There can be more than two robots having coincident paths
(robot paths very close to each other or overlapping) when
they simultaneously collect the resources from cluster and also
when they return to their respective search positions from the
“nest”. In case (a) of Figure 1, collision is avoided by adding
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Fig. 2. Comparison of Coincident Case in PPCA-CCPFA and DDSA

spatial delay so that there is a free passage for robots to travel.
In case (b) of Figure 1, the path of the robot searching and
the robot going to or coming from the “nest” may intersect
at a particular point. The collision in this case is avoided by
adding time delay.

III. PATH PLANNING AND COLLISION AVOIDANCE FOR
CLUSTERED CENTRAL PLACE FORAGING: PPCA-CCPFA

The PPCA-CCPFA approach is presented in Algorithm 1.
For a robot swarm of size R, every robot that collects or
deposits the target exchanges messages with its neighbors
N within certain radius to determine possible collisions.
Then, the robot computes a collision adjacency matrix for its
neighbors indicating the values of No Collision, Coincident
Paths, or Intersecting Paths. Based on the values of this matrix
different actions are taken.

For the case of Coincident Paths, a waypoint at a certain
angle and distance from the nest is added in order to add
space between the paths of robots and avoid the collisions near
the “nest”. The waypoint added forms a triangular path along
which the robot travels and helps add safety margin between
the incoming robots to the “nest” and outgoing robots from
the “nest”. Assuming that the center of the nest is given by
the origin the new waypoint coordinates can be calculated as
W(xwiv ywi) given by:

Ty = dcosb; (D)
Ywi = dsin; 2

Figure 2(a) displays the reactive collision avoidance approach
for coincident paths in DDSA. Figure 2(b) shows the coin-
cident case for PPCA-CCPFA. The robot travels a triangular
path before returning back to its search position.

For the case of Intersecting Paths a time delay is added
for the robot farthest from the predicted intersection point.
The time interval At added to stop the robot farther from the
collision point is given by:

At = min (;,t;) (3)

where t; and t; represent the predicted time it takes for robot
1 and robot j to reach the intersection point respectively.
The base algorithm for Algorithm 1 is the DDSA described
in [7]. The DDSA broadens a square spiral from one robot
to any number of robots. The generated spiral path of the
robot preserves the determinism and guarantees optimality [7].
The integration of PPCA-CCPFA with DDSA is shown in

Algorithm 1 PPCA-CCPFA
1: > Distributed across robots
2: for all Robots ¢ <— 0 to R do
3:  if Path Planning and Collision Avoidance Activated
then
4 if Target Collected or Target Deposited then
5 FindNeighbors() « N
6: M < ComputeCollision M atriz();
7
8
9

for all Robots ¢ < 0 to N do
for all Robots j < (i + 1) to (N — 1) do
; if M; ; == COINCIDENT then
10: SetWayPoint() + W

11 W < CalculateW ayPoint();

12: if Robot going away from the nest then

13: Go to waypoint W

14: else if M; ; == INTERSECTING then

15: if Robot is farther from Collision Point
then

16: At + CalculateStopTime();

17: StopRobot();

Algorithm 2. The blue pseudo-code indicates the integration
of PPCA-CCPFA into the DDSA algorithm showing in black
pseudo code.

Algorithm 2 Integration of PPCA-CCPFA with DDSA

1: > Distributed across robots
2: for all Robots ¢ < 0 to R do
3: > Create a spiral pattern to follow and store it

4:  for ¢ < 0 to N Clircuits do

5: Q.enqueuve ( (0, ¢Dn(i,¢,R)))

6: Q.enqueuve ( (;Dg(i,¢c, R) ,0))

7: Q.enqueue ( (0, —gDs( i,¢,R)))

8 Q.enqueve ( (—yDw ( 4,¢,R) ,0))

9: > Start at collection point and perform spiral
10:  while ~Q.empty() do

11: if Check if First circuit completed then
12: Activate PPCA-CCPFA

13: w + s + Q.dequeue()

14: Move toward w

15: if target found at current location s then
16: if PPCA-CCPFA Activated then

17: PPCA-CCPFA Check

18: Return to collection point with target
19: if at collection point then

20: Deposit target

21 if PPCA-CCPFA Activated then

22: PPCA-CCPFA Check

23: Return to location s

IV. SIMULATION EXPERIMENT SETUP

The problem domain of the central place foraging task
should work efficiently over different resource distributions in
the workspace. Also the collisions around the “nest” are more



as multiple robots collect resources from the cluster simulta-
neously. To evaluate the proposed PPCA-CCPFA approach, a
cluster distribution with single cluster of size 8 x 8 is used.
The performance of this approach is evaluated by measuring
the target collection rate and average collision rate for multiple
random locations of the cluster in the workspace.

The simulator used for this study is the ARGoS simulator
[23]. ARGoS simulator is a multi physics robot simulator. The
simulator provides high accuracy (close similarity to real en-
vironments), high flexibility (supports heterogeneous robots),
and high efficiency (optimized computational resources to
provide shortest simulation run time possible). ARGoS can
simulate complex environments with a large heterogeneous
robot swarm.

In the experiments, 64 resources in the form of a single 8
x 8 cluster are randomly placed in the square arena space
of 100 m?2. All experiments are run for 30 minutes. The
performance of DDSA [7] and the proposed approach are
compared on 10 random locations of clusters in the arena. An
update cycle of 480 per second for the 2D physics solver in
the ARGoS simulator is used for the experiments. The robots
simulated have parameters similar to the physical iAnt robots
[7], [17]. The simulation setup is similar to the DDSA [7]
so that it is easier to compare its performance with that of
PPCA-CCPFA. To simulate the robot hardware, the robot has
an 8 cm radius with a camera facing downward to detect
the resources. The resources have a radius of 5 cm. The gap
between the spirals is 13 ¢m [7]. The robot has a forward speed
of 8 em/s and a rotation rate of 10 ¢cm/s approximately equal
to 1.25 rad/s. The “nest” radius is 4 ¢m, and it is assumed
that the “nest” is represented by a beacon [7], [17] . The robots
move 8 c¢m/s towards their goal between reorientations [7],
[24]. There are no static obstacles in the arena. The parameters
for the PPCA-CCPFA approach: location of the cluster, the
distance of waypoint and angle of the waypoint along with
the environment and robot parameters mentioned above can
be configured in the ARGoS simulator. The performance of
each approach is evaluated at 10 different locations of the
cluster for swarm size of 3 to 15 robots.

V. SIMULATION EXPERIMENT RESULTS

The performance evaluation is measured using target col-
lection rate and average collision rate for swarm sizes of 3
to 15 robots. Each experiment was performed for 16 com-
binations of waypoint distance taking values d from the set

= {0.2 m,0.3 m,0.5 m,0.6 m}, and waypoint angle
taking values 6 from the set © = {30°,40°,70°,80°}.
The consistent performing values of waypoint distance and
waypoint angle are compared with the performance of DDSA.
The combination values depend on the robot radius and a gap
distance that need to be between consecutive robots.

The performance of PPCA-CCPFA is evaluated based on the
distance d and angle 6 of the waypoint. The best performing
set is chosen by analyzing the graphs and selecting the most
consistent performing set with respect to the DDSA. For
each angle, the best performing distance is selected. Later
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the four sets of angle and distance are compared to simplify
the consistent performing set. Two parameters considered for
performance evaluation: rate of target collection and rate of
average collision. The rate of target collection specifies the
number of targets collected in 30 minutes for each swarm size.
The rate of average collision specifies the average number
of collisions encountered by all the robots in 30 minutes
altogether for a swarm size.

The consistent performing sets are selected and compared
to the DDSA. Figures 3 and 4 show the comparison of
consistent performing sets of PPCA-CCPFA. The selected sets
have better target collection rate as well as lower average
collision rate than the DDSA for swarm size of 3 to 10. From
the figures, it can be observed that PPCA-CCPFA algorithm
with parameters waypoint distance d = 0.5 m and waypoint
angle 6 = 40° perform better than the DDSA for swarm size
range of 3 to 10. The performance of PPCA-CCPFA algorithm
however, decreases with the increase in the swarm size. Figure
4 shows the average collision rate for the swarm for DDSA
and PPCA-CCPFA. The average reduction in average collision
rate for the swarm size 3 to 15 is approximately 33% for the
PPCA-CCPFA approach in comparison to the DDSA. Figure
3 shows the average target collection rate per robot for a
particular swarm size for both the DDSA and PPCA-CCPFA.
It is observed in foraging tasks that an increase in the swarm
size reduces the performance of each robot in the swarm due
to interference between the robots and competition for finite
resources. It can be observed that the reduction of inter-robot
collisions in the PPCA-CCPFA approach helps the per robot
target collection rate by approximately 3% for swarm size 3
to 10.

VI. CONCLUSION AND FUTURE WORK

The focus of the work was to pursue performance improve-
ments in Central Place Foraging by addressing the congestion
problem with path planning and collision avoidance methods
for clustered resource distributions. This included adding spa-
tial delay for coincident paths and time delay for intersecting
paths for the robots collecting resources from a cluster. The
robots having coincident paths travel a triangular path by going
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to a waypoint calculated based on the parameters distance
and angle. Different combinations of waypoint distance and
angle were used to observe the performance of the proposed
approach. For robots having intersecting paths a time delay
was calculated based on motion kinematics. The concentration
was to avoid the congestion observed near the cluster and
central depot location when multiple robots collect resources
affecting overall performance of the central place foraging
algorithm. The proposed approach then was compared to the
popular DDSA for performance evaluation with a single 8
x 8 cluster, swarm sizes of 3 to 15 and ten random cluster
locations. The results showed that there was a reduction of
average number of collisions among the robots and increment
of target collection rate for the swarm size from 3 to 10.
However, the target collection rate decreased with the increase
in the swarm size. It was also observed that the average
number of collisions are reduced significantly and are lower
than that observed for the DDSA even when the swarm size
increases.

This work represents preliminary findings for using path
planning techniques for central place foraging to improve
multi-robot foraging performance. The proposed approach can
be improved with integration of recruitment and techniques
with more intelligent understanding of the environment and
communication between the robots [25]. It is worth investi-
gating the causes for performance degradation when swarm
size increases above 10. Also, it is worth investigating the
performance of the proposed approach on different resource
distributions and exploiting the clusters using an optimal
number of robots relative to cluster size.
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