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Abstract

The organization, Greater Mahale Ecosystem Research and Con­
servation (GMERC), is focused on the study and conservation of var­
ious primate species in the region of Western Tanzania. For effective 
primatology studies, it is imperative to track and observe primate 
behavior at a distance. Such methods are non-intrusive, increase en­
counter durations and provide insights into behavior patterns that are 
found naturally. In this thesis, I propose a method to automatically 
detect chimpanzee vocalizations using machine learning techniques. 
The models can be deployed on micro-computers which are low cost 
and solar powered. This method can greatly increase encounter dura­
tions while directly reducing manual human effort. For this purpose,
I have created a dataset using Urbansound8K and added two distinct 
kinds of chimpanzee vocalizations to define a multiclass classification 
problem. I have evaluated the effectiveness of various audio features 
and different classification techniques and have optimized them for 3 
key factors: accuracy, memory footprint and processing speed. Our 
optimal solution was a 4 layered Convolutional Neural Network that 
used 40 Mel Frequency Cepstral Coefficients as input features. This 
method gave an accuracy of 81.8%, occupied less than 10 Mb of space 
and could perform inference every second on a commonly available 
micro-computer. Lastly, I outline how this framework can be used 
to localize the source of the audio post-classification that can aid the 
tracking and preservation of primates in the Issa Valley, Tanzania.
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1 Introduction

1.1 Introduction to GMERC
The Greater Mahale Ecosystem Research and Conservation (GMREC) is 

a wildlife research team incorporated in Tanzania as GMERC Ltd [1]. It was 
previously known as the Ugalla Primate project and focuses its efforts on the 
ecology, behavior patterns and conservation of primates and other wildlife 
within the Greater Mahale Ecosystem (GME). This region is characterized 
primarily of miombo woodlands with significant patches of wooded grass­
lands, swamps and riverine forests. This area of western Tanzania is one of 
the most mosaic landscapes where chimpanzees live. It is open, seasonal and 
has low annual precipitation.

Figure 1: Study site from: About us, Greater Mahale Ecosystem Research 
and Conservation. https://gmerc.org/about-the-gmerc

The Issa Valley, in western Tanzania houses a study site as shown in Fig­
ure 1. Primatology research interest also stretches to other areas in the re­
gion including those along Lake Tanganyika, Gombe and Mahale Mountains
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National Park. Since 2011, numerous chimpanzee sub-population habitats 
within the larger geographical areas of GME have been monitored and thus 
reflected in the name for the project.

Figure 2: Long term research site from: About us, Greater Mahale Ecosystem 
Research and Conservation. https://gmerc.org/about-the-gmerc

The long term research site as shown in Figure 2 is habitat with savanna- 
woodland characteristics. The nature of this habitat is very important to 
understanding behavioral ecology of hominin. The key questions for the re­
search focus on the social consequences of relatively low population densities 
and group sizes. It is a model for us to understand how we adapted to arid 
and mosaic habitats. Also, understanding the contexts of chimpanzees and 
other primates in these regions has the potential to provide insights regard­
ing bipedalism and the explosion in brain sizes.

To be useful paleoenvironmental models, this information must be aggre­
gated with fossil records and in conjunction with behavioral ecological theory 
to draw potential conclusions. From a conservation and an anthropological 
perspective, these apes are interesting to study. Since some of our earliest 
ancestors thrived in similar environments, understanding these ecosystems 
provide us glimpses into the origins of Homo-Sapiens. Sample association 
patterns with dung and hair sample studies allow for genotype extraction
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and inferences regarding group structure and organization [2], [3]. Specific 
to the greater apes, the conditions posed by these habitats demand novel 
and flexible social organizations, which is not usually a norm for their forest 
dwelling counterparts. Territories and group sizes are also determined using 
spatial distribution and clustering of sleeping nest sites [4].

Most of what we know about the great apes, our early ancestors who’s 
DNA is 98% similar to ours comes from the studies restricted to groups which 
have developed tolerance towards human intervention. It is also to be noted 
that such approaches require investments in the form of time and faces ethi­
cal and feasibility issues for most of the wild populations. Whereas indirect 
means were used to conduct behavioral research, newer methods are being 
adopted to improve precision and efficiency [5]. Since 2018, chimpanzees 
nests in the valley could be identified and previous theories that were devel­
oped via indirect means could be revisited. The usage of Unmanned Aerial 
Vehicles (UAVs) increased contact durations and reduced contact distances 
dramatically. Whilst previously, a typical encounter would last for 1-2 hours 
and from a distance of 40-50 meters, now individuals could be tracked from 
10-15 meters for an entire day. Although this method showed potential, 
some individuals were often difficult to track and thus remain elusive. In ad­
dition to this approach, acoustic monitoring using micro-computers provides 
an additional benefits to aid the tracking efforts. The stationary nature of 
these devices make it less intrusive in the habitat when compared to UAVs. 
Moreover, the devices are capable of automatically detecting chimpanzee vo­
calizations for weeks, with minimal human intervention.

1.2 Bio-acoustics
Bio-acoustics refers to the study of producing, dispersing and the recep­

tion of sounds in animals. The scope of the discipline covers the anatomical 
and neuro-physiological basis of acoustic mechanisms in organisms [6]. With 
specific reference to marine life, the term also implies the usage of sonar 
technology and biomass estimation [7].

Bio-acoustics research at Issa Valley was initially focused on chimpanzee 
long calls or hoots and their significance in selecting nesting sites and me­
diating parties [8]. These parties are organized in smaller numbers during 
the daytime and in significantly larger group sizes during the night. Given
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the smaller population densities and broader home ranges, the organization 
of such parties in this kind of a fragmented social system remains ambiguous.

It was not since 2006 that the simultaneous observation of caller and lis­
tener in the chimpanzee’s socioecological context became a reality. It was 
often logistically difficult to observe and was a necessary validation for the 
chimpanzee long calls and their functional significance. Autonomous Record­
ing Units (ARU’s) by Cornell University, which have been historically suc­
cessful for marine wildlife monitoring and localization have proven to be a 
boon for primatologists [9].

This approach enabled researchers to conduct audio based surveys in ar­
eas that were remote, inaccessible and unmanoeuvrable. The deployment 
of such systems in the Issa Valley made it possible to conduct long range 
observations (from > 2km) and localization (from < 1km) by detecting both 
natures of acoustic signals(hoots and shrieks) made by wild chimpanzees. 
The same devices were used to detect other fauna of interest like frogs, bush- 
backs and other primates. These devices can be solar powered and relay 
recorded sounds to a centralized receiver. To capture the variations induced 
by seasonality, 21 ARU’s have been deployed. These devices are designed for 
capturing audio on a yearlong basis and seek to determine ranging behavior 
as a response to food availability, seasonality and weather.

Although much has been achieved through the implementation of ARU’s, 
one limiting factor for primatology and other terrestrial applications remains 
automated detection and mining of vocalizations on a realtime basis. Appli­
cations with good classifier robustness that can tackle the high variability of 
acoustic signals in terrestrial ecosystems is essential for the monitoring efforts 
for terrestrial mammals. Such applications have attracted a lot of research 
efforts over the last decade [10].

Providing a solution to this problem is the central focus for our research, 
which attempts to monitor calls of interest in real-time. Leveraging the 
advent of improved embedded systems, classification techniques and remotely 
controlled ARU’s, detection and transmission of acoustic information can 
be performed. With minimal human intervention and improved precision, 
accoustic estimation of chimpanzee density can be determined and compared 
with the results of previous research.
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1.3 Main Contributions
This thesis focuses on developing a framework for acoustic monitoring of 

chimpanzee populations. Firstly, I overview the applications and advance­
ments in automatic sound recognition. The classification of sound by ma­
chines is an ever evolving area of research. The biggest challenge to this 
field is to develop customer-centric applications that require a fair degree of 
robustness to real world acoustic noise and distortions.

Analyzing and classifying raw audio signals requires a tremendous amount 
of compute. These signals have to be transformed into their lower dimen­
sional representations. Using such transformations, I aim to compress the 
audio clip and still retain most of the meaningful information. A wide per­
spective on acoustic features and their extraction procedures is provided. 
These features closely mimic the neural signals that are transformed in our 
body by the ear and auditory cortex.

Given the task of classifying chimpanzee ‘hoots’ and ‘shrieks’ from other 
sounds in nature, a description of the current state of research and develop­
ment is provided. I review the merits and demerits of the traditional and 
newer classification approaches to understand what fits best for our current 
case. Since the predictions are performed on a smaller inference engine, it is 
imperative to develop a lightweight system. An overview of the system setup 
is given in Figure 3.

Figure 3: System Setup
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1.4 Remaining Chapters
Chapter 2 highlights some of the key research in automatic sound recog­

nition. Some of the prominent time and frequency domain features that 
are used for audio analysis have been investigated. Mel Frequency Cepstral 
Coefficients (MFCCs) which are some of the most widely used features of 
choice are revisited in greater detail. Also, Gammatone Cepstral Coefficients 
(GTCCs) have been experimented with, as viable alternative to MFCCs. 
For the classification tasks, Support Vector Machines were by far the most 
widely used classifiers untill they were replaced with perceptron based mod­
els. A wide perspective is then provided on the features and classifiers used 
in acoustic monitoring systems. A description of the current state of re­
search and development is provided, after which the current experimental 
setup is discussed in Chapter 3. The results from the experiments and the 
final model to be used are covered in Chapter 4. In Chapter 5, I demonstrate 
how real-time detection is performed when the final model is deployed on a 
micro-computer. Future work and continued studies are discussed in Chapter 
6.

1.5 Key Terms
machine learning: Multi-disciplinary field that brings together concepts 
from computer science, statistics and data analysis to understand and ex­
tract information from the ever increasing amounts of data.

classification: Assigning something to a discrete set of possibilities. ex. 
spam or non spam, Democrat or Republican, blood type (A, B, AB, O).

supervised learning: The machine learning task of inferring a function 
from labeled training data consisting of pairs of input objects and a desired 
output value.

categorical data: Data that can be labeled or divided into groups. ex. 
race, sex, hair, color.

inference: Understanding how the output changes with respect to differ­
ent input values.
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W A V E /W A V : Waveform Audio File Format; a uncompressed, lossless au­
dio file format standard for storing an audio bitstream on PCs developed by 
Microsoft and IBM.
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2 Automatic Sound Recognition

With the advent of machine learning and embedded systems, automatic 
sound recognition (ASR) has attracted a lot of interest in the recent years. 
I will briefly review some of the important advancements in speech and non 
speech based domains. Like any classification exercise, the robustness of 
sound classification systems depends on the choice of features and classifiers 
used. The key difference between automatic recording units (ARUs) and ASR 
systems is that an ASR system is intended to process signals, apply machine 
learning techniques and recognize sounds automatically. The inputs can be 
speech or non-speech based on the system objectives. Preliminary research 
in ASR was related to content-based [11]- [13], speech [14], and non-speech 
[15] based audio classification. Eventually, diversified applications in audio 
like genre classification and instrument identification have been developed.

Other applications of non-speech based sound recognition are sound event 
recognition [16], environmental sound recognition [17], and audio surveillance 
[18]. Environmental sound recognition(ESR) in particular, poses a unique 
challenge because of the presence of numerous sounds in the environment 
which can be observed in different combinations at any given point in time. 
While the applications can be many, a generic method for building a sound 
recognition system follows three key steps: signal processing, feature engi­
neering, and classification. Signal processing prepares and cleans the raw 
audio signal for feature engineering. Commonly, an audio signal is divided 
into frames with lengths ranging from 15-40 ms onto which a window function 
is panned across. This smoothens the signal and allows for further analysis. 
Commonly used sampling frequencies are 8KHz, 16KHz, 22KHz and 44KHz, 
depending on the Nyquist criterion and the frequency bands of the sound 
signals. For a waveform to be reconstructed correctly, the Nyquist criterion 
states that the sampling frequency must be greater than or equal to twice 
of the frequency to be sampled. Depending on the frequency selected, frame 
sizes are chosen accordingly (256, 512, 1024 samples for each frame). A 
certain amount of overlap is also incorporated when transitioning from one 
frame to another for preventing any loss of information around the frame 
edges. Inherently, time domain and frequency domain features are extracted 
from these signals which are often condensed and adequately representative. 
Most of the traditional features continue to be in use today with successful
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machine learning pipelines being built around them. Audio features may be 
broadly classified into:

• Time domain: features in the sound signal like amplitude, power and 
their temporal patterns.

• Frequency domain: semantically meaningful perceptual features which 
describe physical and statistical properties on the signal.

• Modulation frequency features: features representing long term varia­
tions in amplitude and frequency of the signal.

• Cepstral features: features approximating the modular and spectral 
envelopes.

• Eigen domain features: another long term feature representation with 
window durations ranging across several seconds.

• Phase space features: orthogonal feature information representation 
derived from linear models.

The most frequently used features for classification systems are cepstral 
features, followed by time and frequency domain features. Historically Sup­
port Vector Machines(SVMs) [12], [19], [20] were the most popular classifiers 
of choice. Other classification methods incorporated Hidden Markov Models 
(HMMs) [21], Neural Networks(NNs) [22], [23], k-Nearest Neighbors(kNNs) 
[24] and Gaussian Mixture Models(GMMs) [21]. Numerous systems incorpo­
rating hybrid and modified versions of these legacy classifiers are still being 
used today and are defined extensively in literature. Today, the development 
of deep learning has spread its horizons onto the audio domain as well, with 
significant amount of research being devoted to its applications in pattern 
recognition. With audio classification as a deterministic, closed set finite 
problem having sufficient labelled data at its disposal, deep learning is a 
practical approach for such problems.

Classification performance for ASR systems is generally measured via 
precision-recall metrics which can be given as a percentage of relevant re­
sults out of all the retrieved instances and relevant instances retrieved over 
the total amount of relevant instances. The F1 score, which is the har­
monic mean of precision and recall may also be used in conjunction. In our
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study, I derive inspiration from the feature extraction principles and classifi­
cation mechanisms developed for content-based audio classification [12], [13], 
surveillance [18] and ESR systems[21], [25].

Given its usage in the previous ASR systems for the same purpose [8], 
I have tried Support Vector Machines as choice of classifiers. I also give an 
overview of Neural Network architectures which have gained in prominence 
for developing speech recognition systems and other ASR systems as well. 
Finally, I propose the method that balances out adequate classification power, 
quick prediction time and low memory footprint.

2.1 Feature Engineering
Early works in acoustic monitoring observed much feasibility in marine 

ecosystems because sound propagates further in water than air. One such 
application also saw commercial success [11]. Using normalized Euclidean 
distances, a KNN classifier was built using abstract acoustic features like 
bandwidth, spectral centroid, loudness and pitch. Other features in the 
time-frequency domain used were short-time energy (STE), zero-crossing rate 
(ZCR), spectral flux (SF), spectral roll-off (SR) and subband energy (SBE). 
Even though these features are often revisited from time to time in recent 
applications, they are used as information that supplement some of the pri­
mary features used such as cepstral features. Because of the attention gained 
by cepstral features for speech and non-speech based applications, their per­
formance on our test case will be investigated .

2.1.1 Mel Frequency Cepstral Coefficients

The human auditory perception is enhanced at lower frequency ranges 
than at higher frequency ranges. At lower frequencies, we are able to distin­
guish changes in pitch better. Mel frequency cepstral coefficients(MFCCs) 
were first introduced for the Muscle fish database [19]. When frequency bands 
are spaced equally on the Mel scale instead of the linearly spaced Hertz scale, 
it becomes intuitively easier to interpret sounds. Additionally since changes 
in frequencies are much more informative in a cepstrum, a combination of 
Mel scaled frequencies and their cepstrums give us MFCCs which are use­
ful in classification based applications. Based on the procedure outlined by 
Sharan and Moir in [26], the windowed signal is first subjected to a discrete
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Fourier transform(DFT) to compute the MFCCs:

where x(n) is the sampled time domain signal, w(n) is the window function, 
and N is the window length at frame t. Given a sampling frequency Fs , 
X (k, t) represents the kth harmonic for frequency f  (k). Here, f  (k) is denoted 
as f  (k) =  kFs/N . In order to convert frequencies in Hertz ( fHz) to Mel scaled 
frequencies (f'Mei):

For M\ number of filters, the mth filter’s central frequencies can be computed
as:

After converting the frequencies to the mel scale, the minimum and maximum 
threshold frequencies are correspondingly scaled to f  and f h. To incorpo­
rate a degree of overlap, the filter boundaries are adjusted such that a filter 
begins at the central frequency of its preceding filter and ends at the central 
frequency of the next filter. For the mth filter and frame t, the filter bank 
energy outputs can be determined as:

The frequency response is normalized and given as V(m,k). The filter bank 
energies are log compressed and passed through a discrete cosine transfor­
mation to give MFCCs:

Here, L is the cepstrum order. Normally, 20-25 filters are used in the bank 
in constant mel-frequency intervals spread across the entire input frequency
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range. For example, 23 filters in [17], [20], 20 filters in [18], [27] and 19 filters 
in [19] are used to sufficiently discriminate characteristics of input classes. 
For observing changes of MFCCs over time, its first order and second order 
derivatives are also used. These trajectories improve the performance of some 
classifiers. These derivatives are called the delta and double-delta coefficients 
and are computed as:

where t is the frame, i is the corresponding delta coefficient and value D 
which is normally set to 2. A similar approach can be used to compute 
the double-delta coefficients C(A- A)(i,t). Along each feature dimension, the 
mean and standard deviations are used as feature vector representations for 
each audio signal. It is a common practice to normalize the coefficients to 
remove distortions caused by environmental conditions. Although there are 
many techniques to normalize this data, Sharan and Moir in [26] suggest the 
usage of Cepstral mean variance normalization(CMVN) for this approach.

where ^(i) is the mean and a(i) is the variance for the dimension i. Cepstral 
Scaling(CS), another normalization method with [0 1] as bounds can also be 
used as:

where max(c(i)) is the maximum and min(c(i)) is the minimum value for 
dimension i . The same equations can be used for normalization of the first 
and second order derivatives. Further normalization of background sounds 
can be achieved by first classifying the sounds as non-silent and silent based 
on the signal magnitude sum and a predefined threshold [19]. The result­
ing non-silent features are concatenated and used as a feature vector where 
further normalization can be performed. Cepstral features can later be com-
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When observing the performance of MFCCs under various noisy condi­
tions, a large repository of environmental sounds is required to capture the 
effects of induced variations. Without this, MFCCs tend to perform rather 
poorly for both speech and non-speech based applications [16], [28]. Tech­
niques like root compression and log spectrum compression are solutions for 
cepstral analysis problems where there is a significant amount of noise [14]. 
For low energy components, disproportionate variations in the cepstrum [29] 
can be effectively captured using log compression and peaks of the mel-filter 
banks. Root compression for the cepstral coefficients instead of log compres­
sion further improves the robustness of the classifiers when using MFCCs:

bined with other perceptual features to improve classification performance.

Root compression is used on the filter bank energies with a 7 root value 
where 0 < 7  < 1. When 7 = 1 ,  the resulting cepstral coefficients are linear 
with uncompressed filter bank energies. For low signal-to-noise conditions, 
Y is set closer to 1 and results in higher accuracies for these feature vec­
tors [18]. One such application with air-conditioner noise as background 
used independent component analysis, a technique used for data separabil­
ity in conjunction with MFCCs [30]. To enhance the robustness, this ap­
plication uses a combination of two techniques in conjunction: a subspace 
based signal enhancement that takes into account the changing signal to 
noise ratio (SNR) and an independent component analysis using MFCCs as 
features. Finally, a multiclass SVM is used for the classification exercise. 
Other variations for deriving filter bank energies using Gammatone Cepstral 
Coefficients(GTCCs) and Power Normalized Cepstral Coefficients(PNCCs) 
[31] are also useful when the nature of the background noise is reverberant.

2.1.2 Gammatone Cepstral Coefficients(GTCCs)

While MFCCs still remain the most widely used features of choice, GTCCs 
have been gaining a lot of traction among the other cepstral features. In­
stead of using the Mel scale, a gammatone filter is used which derives its 
inspiration from the human ear anatomy. The cochlea's frequency selectivity
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can be determined using knowledge of our cavity structure and receptors. 
Patterson’s [32] cochlea model is the most widely used model where band­
pass filters are defined using equivalent rectangular bandwidth (ERB). Some 
implementations of these filterbanks have been proposed, with Apple Com­
puter’s work [33] being the most followed procedure for both speech [34] and 
non-speech [35] based applications. For extracting GTCCs the corresponding 
gammatone filter impulse response is given as:

where the amplitude is denoted as A, filter order as j  , filter bandwidth as 
B , central frequency as f c with phase 0 and time r.

Each of the cochlea’s filter bandwidths are desribed by the ERB [14], 
where ERB is the perceptual filter width along various points of the cochlear 
structure.

The filter quality asymptotics are given as Qear at higher frequency ranges 
and the low frequency bandwidth threshold is given as Bmin. We can then 
approximate the filter bandwidth by B =  1.019 x f cERB. There are different 
sets of parameters used for different cochlear models, ex. (p = 1 , Bmin =  24.7 
and Qear =  9.26) as given in [34], (p =  2, Bmin =  125, and Qear =  8) in [33] 
and (p = 1 ,  Bmin =  22.85, and Qear =  7.23) in [36]. In every model, a 
characteristic frequency and a specific bandwidth is resonated by the hair 
cells inside the cochlea. An overlap between the filters is indicated using a 
step factor parameter integrated with mappings between central frequencies 
and cochlear positions. The filter index and central frequencies can then be 
mapped as

where the filter bank’s upper frequency is given as f h and number of filters 
used is M2. The step factor is given as s where
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A gammatone filter using 2nd order digital filters for four stages is ex­
plained in [33] and its corresponding implementation is provided in MATLAB 
[37]. A detailed analysis on the performance of MFCCs and GTCCs was per­
formed in [35] where it was concluded that GTCCs outperform MFCCs for 
non-speech based applications in the lower frequency ranges.

2.1.3 Other representations in the time-frequency domain

Alternatively, one of the most popular time frequency image represen­
tations are done using the Short-time Fourier transform(STFT). Equally 
spaced frequency components are plotted against constant bandwidth in­
crements. However, most of the audio signals for classification purposes have 
frequencies in the lower ranges than on the higher ranges. As a consequence, 
some information is lost for the lower frequency ranges and uninformative 
aspects pertaining to higher frequency ranges is retained in this kind of rep­
resentation.

STFT spectrograms can be modified to use mel-filters and gammatone 
filters to give two different kinds of cochleagrams called Melspectrogram and 
Gammatone spectrogram respectively. The common aspect of both these 
representations is that smaller bandwidths are used for lower frequencies 
and larger bandwidths for higher frequencies. Since there are more compo­
nents in the lower range of the spectrum, they are more suitable for regular 
audio classification tasks. Audio separation [38] and speech recognition [39] 
are some of the applications that derive features using image-based repre­
sentations. For example, when a signal is windowed and scaled using the 
gammatone filter, each frequency component’s energies can be represented 
as

and fi is the filter bank’s lower frequency limit.

where C(m, t) is the mth harmonic corresponding to the gammatone fil­
tered signal x(m, n) and window function w(n). The results obtained are 
then normalized in the range [0,1] to get the grayscale image intensity values
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for the cochleagram. This method of extracting features from cochleagrams 
has been shown to improve classification performance at low SNRs [38], [39]. 
Further improvement in performance can be achieved when aggregated with 
MFCCs and GTCCs.

2.2 Classification
In this work, I only focus on two classifiers, Support Vector Machines 

(SVMs) and Neural Networks (NNs). I provide a brief background and 
discuss their performance. The supervised classification approach consists 
of an preliminary training process that uses labelled data to train and de­
velop a predictive model. This is followed by building a classifier that learns 
examples from the labelled data and performs predictions on unseen data. 
Classification of environmental sounds that do not consist of music or speech 
data is predominantly based on applying general classifiers like Gaussian 
Mixture Models (GMMs) and Hidden Markov Models (HMMs) because of 
the diverse and chaotic nature in their audio structures. One of the main 
problems with training Deep Neural architectures in a supervised manner is 
the amount of computational effort and labeled data required for efficient 
learning. While the former is in some part addressed on a universal basis by 
hardware advances and general-purpose GPU computing, the latter is very 
domain-dependent.

The post-training online process will use the trained model to generate 
predictions on unseen data and classify the sounds. This is performed on 
our ARU of choice - the Raspberry Pi 3. Google TensorFlow 1.9 officially 
supports the Raspberry Pi, making it possible to quickly install TensorFlow 
and start deploying machine learning applications with a Raspberry Pi.

2.2.1 Support Vector Machines

Initially developed for linear classification tasks in 1963 [40], Support 
Vector Machines (SVM's) have been used for non-linear datasets as well since 
1992 [41]. This technique has since then gained a lot of attention along with 
the interests towards Automatic Sound Recognition [42]. Until the evolution 
of Deep Learning techniques for ASR, SVM's have widely been the classifier 
of choice for audio based classification tasks.
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Hyperplanes: SVMs operate on the principle called a hyperplane that 
seeks to separate two classes by maximizing the distance between the corre­
sponding hyperplanes. The simplest example is the dividing boundary of a 
single linearly separable dataset. Similarly, we can assume l training exam­
ples divided into two classes denoted as (x i ,y i) , ..., (xi,yi). Here xi E Rd is a 
feature vector having d dimensions which represents the ith training example. 
The corresponding labels are represented as yi E { —1, +1}. For obtaining 
the optimal hyperplane, we must minimize ||w||2 where yi(w ■ x i +  c) > 1. 
Here, w E Rd is a vector normal to the corresponding hyperplane and c is a 
constant.
Using the Lagrangian duality principle, we obtain:

Here the support vectors are x i and the Lagrange multipliers are denoted as 
ai where ai >  0. These support vectors represent the margin that satisfies 
yi(w ■ x i +  b) =  1, i =  1, 2, ...l. The offset to these margins can be determined
as

which is averaged over all the obtained support vectors.

For problems where a nonlinear decision boundary is required, the input 
vectors x are mapped through 0(x) into a space of higher dimensionality z 
to determine optimal hyperplanes. A  kernel trick which was first seen in 
[41] can be used to create nonlinear classifiers. The inner product of T (xi) 
and $ (x j) is computed using a non-linear kernel function K  (xi; x j ). The 
Radial Basis Function (also known as Gaussian RBF) is commonly used as 
the kernel function:

where the width of the Gaussian function is denoted as a >  0. The classifier 
thus obtained can be denoted as
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Multiclass Classification: Originally a binary classifier, the SVM has 
been modified into a multiclass classifier using a few novel techniques. The 
primary idea behind these techniques is the breaking down of the problem 
into several binary classification tasks. Three methods have hence been de­
veloped for tackling the problem of multiclass classification - one versus one, 
one versus all and Directed Acyclic Graphs (DAG).

Some of the earliest developments were seen for the one versus all method 
of SVM multiclass classification. Here, n independent classifiers are con­
structed for a n class dataset. Each of these classifiers are trained with 
samples from one class as positive and the rest as negative. At classification 
time, an example x is categorized based on the decision function

The one versus one method performs classification between pairs of classes. 
An approach called as max-wins voting is used here. For an n class classi­
fication problem, n(n — 1)/2 classifiers are constructed and two classes are 
taken at a time to construct each SVM. A test example can be classified as

where i and j  are classes.

The Directed Acyclic Graphs (DAG) method also takes two classes at a 
time but uses decision trees to perform classification during the test phase. 
Similar to the one versus one method, n(n — 1)/2 classifiers are built dur­
ing the training phase. The only difference is that by using decision trees, 
only n — 1 classifiers are required for each classification during the test phase.

In general, SMVs outperform most classifiers except today's perceptron 
based models. In some cases, Hidden Markov Models (HMMs) perform better 
than linear SVMs [16]. For classification problems that are complex in nature, 
nonlinear SVMs are preferred. In [17], the results obtained from binary SVMs 
and HMMs are not significantly different. It is to be noted that iterating over 
the parameters c and a can help in avoiding local minima and further improve 
the performance of the classifier.
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2.2.2 Neural Networks

The introduction of deep learning has paved the way for several advance­
ments in the field of Automatic Sound Recognition. Some of the earlier 
methods relied heavily on the way in which the acoustic features were pre­
processed [30], [31], [33], [38]. Since manually labelling and annotating sound 
events is a cost intensive task, there are a limited number of datasets that 
are publicly available. However, Convolutional Neural Networks (CNNs) and 
data augmentation make it possible to analyze environmental sounds even 
when the training data is limited [21], [25].

Backpropagation: All Neural Networks are based on the principle of 
backpropagation. During initialization, the weights and biases and even filter 
values (in case of CNNs) are often randomized and do not represent mean­
ingful features. It is only after exposing them to the labelled observations 
that the parameters get tuned accordingly. A single backpropagation itera­
tion consists of a forward pass, computation of the loss function, a backward 
pass and parameter update.

When training examples are passed through the network, the first output 
will be unbiased and wont give preference to any output in particular since the 
weights and biases are randomly initialized. A loss function is then computed, 
for example, the mean squared error (MSE) in a standard regression task with 
N training examples is given by:

For the first few iterations, we observe high loss values. If we want to 
reach a point where the predicted examples represent their corresponding 
training examples, we need to minimize the loss function. Therefore, we 
need to revisit the weights and biases in our network that contribute to a 
high amount of loss for the network. Mathematically, this can be represented 
as a calculus problem where we are computing dL/dW for the layer weights.

The backward pass here determines the amount of loss that the individ­
ual weights have contributed to the final loss calculation. For updating the 
weights, we use a learning rate to update them and mitigate a portion of
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their loss contribution.

where wi is the initial weight and w is the updated weight after one back­
ward pass. The learning rate n is the learning rate hyperparameter. Higher 
learning rates speed up the training process by making bigger updates to 
the weights during each iteration. However, they may sometimes imprecisely 
overshoot beyond their optimal values. Lower learning rates mean enhanced 
precision but a higher number of steps required to arrive at the optimal val­
ues. Commonly, the learning rate is set to 0.1 or 0.01. Alternatively, adaptive 
learning rates are used to arrive at the optimal learning rate automatically. 
The backpropagation iteration is repeated for sets of training examples (called 
batches). The number of iterations required depends on the size of the 
dataset and complexity of the network. Sometimes, the network might over­
fit to the training data where the function is fit closely to a limited number 
of observations and fails to generalize well for unseen data. To prevent over­
fitting, a technique known as early stoppage can be used where an arbitrary 
large number of epochs are defined during training. The process is stopped 
when there is no marginal improvement in performance on a hold-out cross 
validation dataset. Once the final parameter update for the final training 
example is done, we can assume that the network is sufficiently trained and 
ready to use on unseen data.

Convolutional Layer: A typical Convolutional Neural Network (CNN) 
architecture is characterized by groups of layers that are stacked together. 
Firstly, there are a limited number of input layers followed by combinations 
of convolutional layers, pooling layers, Fully Connected layers, and finally 
an output layer. The key difference between a CNN architecture and that 
of a multilayer perceptron is the introduction of convolutional and pooling 
layers that can be arranged in various ways. The convolutional operations 
determine the neurons that that are connected to certain regions in the input. 
Each operation computes a dot product of the weights and the small regions 
in the input space that they might be connected to. Pooling operations 
downsample the input vector along its width and height, resulting in a smaller 
output vectors. This operation reduces the overall number of parameters 
to be computed and therefore improves training speeds. A convolutional

20



operation (CONV) is normally followed by a pooling operation (POOL) as 
seen in Figure 3.

Figure 4: CONV and POOL operations [43]

The local structure for two dimensional input data (images) is rather 
unique to that of one dimensional input data (sound). Convolutional layers 
aim to take advantage of this structure by organizing hidden units in a spe­
cial way. The convolutional operation processes only a small fraction of the 
entire input space (e.g. 3 x 3 pixel blocks) at once. The hidden unit is not 
connected to all the nodes of the previous layer. The weights associated with 
these hidden units represent a convolutional filter (kernel) which is used to 
scan the entire input space. After this filter is applied, a feature map is cre­
ated. The same set of weights obtained can be used over and over again till 
the input space is completely scanned. By doing so, locally useful features 
(e.g. edges, shapes) can be detected in other regions within the input space. 
By looking for these specific features, most other insignificant features are ig­
nored which results in lower costs of computation. This approach inherently 
makes the data robust to changes like translational shifts. A convolutional 
layer may have more than one filter. Even though sound could be considered 
a 1D signal, by creating spectrograms we can use the above 2D techniques 
traditionally developed for images.

To further reduce dimensionality and costs of computation, pooling layers 
are introduced which accumulate the information from adjacent cells in the 
feature map. Some of the common pooling operations are average-pooling 
(values in the cell are averaged) and max-pooling (highest value in the cell). 
Robustness to translations is further improved as a result of this downsam-
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Rectified Linear Units: In Neural Networks, the activation functions de­
termine the output of nodes given the input values. They are analogous to 
logic gates in integrated circuits where the outputs can be 0 or 1 based on 
the logic and input values. Traditional activation functions like hyperbolic 
tangent and sigmoid were used for most of the Neural Network based archi­
tectures. Recent studies have replaced them with more viable solutions. One 
such activation function uses Rectified Linear Units (ReLUs) which is given 
as:

pling.

When compared to traditional activation functions, ReLUs are computa­
tionally faster and perform gradient propagation with better efficiency. Sig­
moid units cause saturation in some cases. Also, their activation structure is 
much sparser than that of sigmoid units [44]. Even with a simple structure, 
the ReLUs still retain most of their discriminatory properties. These units 
however use random weight initialization which comes with a few drawbacks 
- some units, because of their initialization values always result in zero gradi­
ents. To address this issue, Leaky Rectified Units have been developed [45]. 
Leaky ReLUs have non zero slopes and effectively tackle the zero gradient 
problem [46].

Exponential Linear Units: Exponential Linear Units [47] or widely known 
as ELUs are the newer additions to the family of activation functions. They 
have a tendency to quickly converge the cost to zero and produce higher ac­
curacy estimates. The key difference here is the inclusion of an extra constant 
a where a > 0.

The working of ELU is similar to that of ReLU with both serving as 
indentity functions for positive inputs. The key exception is that while ReLU 
smoothens sharply, ELU smoothens slowly as the output tends towards - a .  
Unlike ReLU, ELU can produce negative results as well.
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Dropout Learning: Neural Network architectures are capable of gener­
alizing a wide variety of functions. Because of their flexibility, overfitting is 
sometimes a common problem where the algorithm might perform poorly on 
unseen examples. In the case of CNNs, this problem is slightly mitigated 
through weight sharing of the parameters. However, for any network, if the 
number of training examples are limited, the model may not generalize well 
for out-of-sample data.

To address the overfitting problem, a highly effective method known as 
dropout learning has been introduced [21]. Every hidden unit, in each iter­
ation is assigned with a certain probability of removal (50% in the original 
paper). The rest of the learning procedure is performed normally. The ran­
dom removal of nodes sometimes do not allow the network to learn complex 
dependencies and correlations between hidden units. In this way, clusters 
of hidden units that are strongly wired together tend to capture long range 
dependencies better. A  network architecture that has been trimmed using 
dropout techniques produces better generalization capability by mitigating 
the effects of overfitting during the learning process.

Data Augmentation: Another factor that limits the generalization ca­
pacity of Neural Networks the the non availability of adequate training data. 
The publicly available datasets that are useful for sound classification have 
minuscule volumes when compared to those that are available for image clas­
sification research. For datasets of such limited nature, a solution known as 
data augmentation that has been successful for image recognition tasks can 
be revisited for audio classification as well.

This approach aims to expand the dataset by applying some deformations 
and still be classified according to the original labels of the training examples. 
For example, deformations like rotation, translation, scaling or mirroring 
would not change the semantic meaning of an image (e.g.a cat). Since all 
the deformed images carry the same label, the Neural Network attains the 
capability to see beyond such deformations for unseen data thus making the 
classifier more generalized. In the case of audio based data, deformations 
that were normally used are pitch shifting, noise addition, time stretching 
and time shifting [21], [48].
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3 Experimental Setup

In this section, the experimental setup is discussed. For the successful 
application, I seek to evaluate the merits and demerits posed during each 
experiment iteration. In all cases, I aim to achieve a good classification ac­
curacy. Since the inference is run on the Raspberry Pi, it is imperative to 
have a small sized model with a low memory footprint without compromising 
much on the accuracy estimates. A  small sized model would also result in 
faster processing that allows for near-realtime inference on smaller engines. 
The experiments were conducted on a system with i5-7500 CPU @ 3.40 GHz, 
16gb DDR4 RAM and NVIDIA GeForce GTX 1060 6GB GPU. Through our 
experimental setup, I seek to find answers the following questions:

1) What are the features of choice used when transforming the raw audio 
clip: MFCCs or GTCCs?
2) What are the advantages of Neural Networks over traditional machine 
learning models?
3) Can the Convolutional layers be used instead of the compute intensive 
Fully-Connected layers for audio data?
4) Is it possible to achieve a memory footprint less than 100MB without 
compromising on accuracy?
5) Given the limited compute capability of the Raspberry Pi, can I perform 
an accurate classification within a time window of 1 second?

Test Methods: In Section 3.1, I give a brief overview of the dataset that I 
will be working with. For our method of classification, the chimpanzee calls 
have to be supplemented with other annotated sound samples before training 
the classifier. By doing so, I attempt to make the classifier robust so that the 
chimpanzee calls are distinguishable from other sounds in the environment. 
Once the dataset is explored, I normalize it on various attributes like sam­
pling rate, bit depth and number of channels to make the training process 
easier.

A baseline Convolutional Neural Network is described in Section 3.2. This 
iteration of the model is used as a benchmark to evaluate the performance 
associated with the choice of audio features, classifiers and network archi­
tectures. The model is initialized with two Convolutional layers and two
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Fully Connected layers. Batch Normalization and Dropout are included to 
enhance model performance and stability.

Section 3.3 describes the process used to select the audio features used as 
inputs to the classifier. I evaluate the performance of Mel Frequency Cep- 
stral Coefficents (MFCCs) and Gammatone Cepstral Coefficients (GTCCs), 
an emerging choice of features for audio classification tasks.

Support Vector Machines (SVMs), which were the most popular classi­
fiers are revisited in Section 3.4. Here the performance of SVM and Neural 
Network based architectures is evaluated. The model parameters are fine- 
tuned using Grid Search to obtain the optimal set of values for the model. 
The performance of the best working model is evaluated with that of our 
baseline CNN.

In Section 3.5, I evaluate the merits and demerits of using Fully Con­
nected Layers instead of Convolutional layers. Fully Connected layers look 
at all possible associations from the previous layer to determine the activa­
tion of a node whereas Convolutional layers look at only the adjacent nodes 
from the previous layer. With lesser chances of overfitting and comparable 
accuracy estimates, I evaluate if the usage of Convolutional Layers would be 
better suited to our task.

To fine-tune our model further after determining the architecture, I ran 
a Grid Search routine for the baseline model in Section 3.6. I iterate over 
various layer sizes, dropout probabilities and activation functions to deter­
mine the best performing set of hyperparameters for the model. Moreover, 
the number of MFCC channels were increased from 40 to 80 during feature 
extraction to improve granularity and therefore accuracy estimates.

This version of the model is evaluated in Section 3.7. It is then exported 
to the Raspberry Pi for the inference tasks.

3.1 Dataset Overview
The chimpanzee calls are combined with a publicly available dataset 

known as Urbansound8K [49]. This dataset consists of 8732 audio files which 
are each less than 4 seconds. These sounds have been captured from a variety
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of audio sources and labelled into 10 classes that are commonly encountered 
in urban environments - air conditioners, dogs barking, cars honking, children 
playing, drilling, idling of engines, gun shots, jackhammers, sirens and street 
music. These sounds are arranged into 10 folds for k-fold cross validation, a 
procedure used for re-sampling the data and evaluating model performance. 
Even though these sounds are not normally heard in a forest environment, 
adding these makes for a robust classifier that can detect chimpanzee calls 
even in the presence of other sounds. Moreover, this dataset has been used 
to evaluate a lot of audio classification approaches and thus gives us baseline 
performance metrics for comparison. One such work by Salamon and Bello 
[49] introduces a network that uses mel-spectrograms as features which are 
further reduced in dimensionality using Principal Component Analysis. The 
accuracy for the baseline network used was 68% and the best version that 
was developed gave an accuracy of 73%. By augmenting the chimpanzee calls 
collected on the research site with this dataset, I created a multiclass clas­
sification problem. This approach has an inherent tendency to reduce the 
amount of false positives that may be detected instead of the chimpanzee 
calls.

For the input data, in Table 1 we can see that the sample rates are not 
consistent and need to be normalized to a value which can still allow us 
to perform sound classification tasks. The chimpanzee calls recorded have a 
sampling rate of 11025Hz. Therefore, I have chosen a value of 11025 to which 
all the sounds can be downsampled. For 12 samples that were recorded at 
8kHz, I have excluded them from the training set since downsampling all the 
sounds to 8kHz instead of 11kHz would cause a significant loss of informa­
tion. Moreover since the number of excluded samples are relatively small, 
the resulting dataset is still be relatively balanced.
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Sampling Rate Value Counts
44100 5370
48000 2502
96000 610
24000 82
16000 45
22050 44
11025 39
192000 17
8000 12
11024 7
32000 4

Table 1: Sampling rates of sounds (Urbansound8K)

Since the chimpanzee audio files are recorded in mono, it is necessary to 
change the number of channels to 1 for all the files before training. In Table 
2, we see that the audio clips in the Urbansound8K dataset have a significant 
amount of audio clips which are recorded in stereo. Audio signals recorded 
in stereo have two dimensions representing the channels. Data in the two 
channels are averaged together to get a mono signal.

Channels Value Counts
2 7993
1 739

Table 2: Number of Channels (Urbansound8K)

The chimpanzee audio files have a bit depth of 16. In Table 3, we observe 
that the audio clips in the Urbansound8K dataset have varying bit depths. 
All the files are normalized to 16 bit to avoid any loss of information and 
consistency. I excluded the 52 samples with less than 16 bit depth as a 
part of the training set. The folder structure for the original dataset was re­
organized so that the sound files are placed in their respective class folders. 
This makes it convenient to add or remove classes from this dataset.
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Bit Depth Value Counts
16 5758
24 2753
32 169
8 43
4 9

Table 3: Bit depth of the sounds (Urbansound8K)

The amplitudes of these sounds are broadly determined by the distance 
between the source and the receiver. To normalize this effect, I normalized 
the mean amplitudes each sound to a value equal to the total mean ampli­
tude of all the sounds combined. Each sound is applied an amplitude gain 
value based on the difference of its mean to the total mean value. In this way, 
we can mitigate some of the bias that may be induced because of recording 
distance.

For some of the sounds which have durations of less than 4 seconds, I 
recombined them into a single file and split them into 4 second chunks. This 
ensures that the all the sounds have a length of 4 seconds, sampling rate of 
11025Hz, single channel and a bit depth of 16.

Once the dataset is sufficiently normalized, I employed data augmenta­
tion methods like time shifting, noise addition, pitch shifting and amplitude 
changes with random probabilities to each sound sample. Their original label 
is preserved after applying the deformations. By doing so, the dataset is ex­
panded to multiple times its original volume. After augmentation, I obtained 
a dataset consisting of 57246 training examples with about 4700 samples per 
class. The classifier thus built is resilient to overfitting and invariant of such 
deformations if they occur naturally.

3.2 Baseline Network
I conducted our experiments with a baseline network comprising of a 

CONV-POOL-CONV-POOL based architecture followed by two Fully Con­
nected layers to evaluate the abstracted outputs. The network architecture 
can be generated using the model summary feature in Keras as shown in
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Figure 5.

Layer (type) Output Shape Param #
conv2d_1 (Conv2D) ( None , 40, 87, 16) 80
batcMnormalizatio^l (Batch ( None , 40, 87, 16) 64
max_pooling2d _1 (MaxPooling2 ( None , 20, 43, 16) 0
dropout_1 (Dropout) ( None , 20, 43, 16) 0
conv2d_2 (Conv2D) ( None , 20, 43, 32) 2080
max_pooling2d _2 (MaxPooling2 ( None , 10, 21, 32) 0
dropout_2 (Dropout) ( None , 10, 21, 32) 0
flatten_1 (Flatten) ( None , 6720) 0
dense_1 (Dense) ( None , 128) 860288
dropout_3 (Dropout) ( None , 128) 0
dense_2 (Dense) ( None , 12) 1548
Total params : 864,060 
Trainable params: 864,028 
Non-trainable params: 32

Figure 5: Baseline CNN architecture

The Convolutional Layers (conv2d-l,conv2d_2) consist of filters that ab­
stract out shapes that generally resemble their representations. The input 
layer’s dimensions are accordingly adjusted as a 2-D feature vector after the 
transformations have been applied to the raw audio signals. Pixel groups 
that occupy an area equal to the square of the kernel size are transformed 
into one pixel when passed through a filter.

As we go through to the deeper layers, the output of the first Convo­
lutional layer becomes an input to the second convolutional layer after any 
pooling operations . At this point, each input layer is a positional represen­
tation of where the lower level features(e.g. lines, curves) are detected. A 
similar filter mechanism when applied on the lower level features enables us 
to detect higher level features(e.g. edges at a angle, combination of edges) 
across a larger receptive field. By the end of the network, we obtain activa­
tion maps that represent the sum of the higher level sound patterns created 
by various sources.

Max-Pool layers (max-pooling2d-l,max-pooling2d-2) are usually followed 
by the Dropout layers (dropout-2, dropout-3). I used dropout to reduce the
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disproportionate dependency on smaller sets of features. If they are placed 
before the Max-Pool layers, this phenomenon is not upheld. The Max-Pool 
layers pick up the maximum value from their respective set of input values. 
The dropout layer thus will be of its optimal utility if it randomly picks up 
the maximum value from the set of input values. Therefore, the small fea­
ture dependencies are only removed when the maximum value has a dropout 
probability higher than the predefined value. The activation functions are 
followed by a layer of Batch Normalization (batch-normalization_ 1). By ad­
justing and scaling the activations, Batch Normalization improves training 
times, accuracy estimates and stability of the model.

Fully Connected Layers (dense- 1,dense_2) aggregate the flattened input 
volume (flatten -1) of the preceding layers and output an n dimensional vec­
tor where n is the number of classes in the original dataset. Each number in 
this output vector represents the probability associated with each class. The 
Fully Connected layers here determine which higher level features correlate 
to a certain class.

Before the training process takes place, the weights are randomly initial­
ized. Each training iteration (i.e. a forward pass, computation of the loss 
function, backward pass and updating parameters) tunes the weights and 
biases of each layer to progressively build the classifier.

3.3 Feature Performance: MFCCs Vs GTCCs
Using the baseline network developed, I have evaluated the performance of 

Mel Frequency Cepstral Coefficients and Gammatone Cepstral Coefficients. 
The input nodes were changed according to the sizes of the feature vectors 
and were trained for 50 epochs with a batch size of 20 (the number of samples 
processed before the model is updated). The resulting accuracy and loss plots 
are then analyzed to determine the appropriate audio features of choice.

3.4 Traditional methods vs Neural Networks
In this experiment, I have trained an SVM model using the sklearn pack­

age and conducted hyperparameter optimization of the kernel function, 7 , 
and c parameters using grid search on 70% of the training set. The following 
optimization parameters given in Table 4 have been used for evaluation:
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Hyperparameter range selection
Y 1e-3, 1e-4, 1e-5, 1e-6 1e-5
c 1,10,20,30,40,50 20

Table 4: Hyperparameter selection for the SVM

I used small values for 7 in powers of 10 to see the effect of 7 at different 
magnitudes. We use small values for c to avoid precision issues from occurring 
when using small 7 and large c values that can lead to the 7 parameter being 
overpowered by the magnitude of c.

3.5 Fully Connected Layers vs Convolutional layers
Even though the usage of convolutional layers in the network architecture 

is domain dependant and was used primarily for image classification tasks, 
we have seen reasonable performance with respect to classification power 
and prediction times for audio based inputs. Alternatively, an architecture 
comprising of only Fully Connected (FC) layers can be trained with the 
expectation of better accuray estimates. FC layers are used to detect specific 
global configurations of the features detected by the lower layers in the net. 
They usually sit at the top of the network hierarchy, at a point when the 
input has been reduced (by the previous, usually convolutional layers) to a 
compact representation of features. Each node in the FC layer learns its own 
set of weights of all of the nodes in the layer below it. In Figure 6, we obtain 
the architecture and layer sizes of the Fully Connected network using the 
model summary feature in Keras.

3.6 Hyperparameter Tuning
To fine-tune the model, I attempt to improve upon the architecture design 

by running a Grid Search routine to evaluate the best set of hyperparame­
ters. There are various hyperparameters that can be optimized like learning 
rate, layer size, dropout rate, activation functions and in some cases, even 
number of layers. I used Talos, an open source python library for evaluating 
the multitude of hyperparameter permutations. Talos incorporates grid, ran­
dom, and probabilistic hyperparameter optimization strategies, with focus on 
maximizing the flexibility and efficiency as a result of random strategy. The
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Layer (type) Output Shape Param #
dense_13 (Dense) ( None , 256) 10496
activation _ 13 (Activation) ( None , 256) 0
dropout_10 (Dropout) ( None , 256) 0
dense_14 (Dense) ( None , 5 12) 131584
activation _ 14 (Activation) ( None , 5 12) 0
dropout_11 (Dropout) ( None , 5 12) 0
dense_15 (Dense) ( None , 256) 131328
activation _ 15 (Activation) ( None , 256) 0
dropout_12 (Dropout) ( None , 256) 0
dense_16 (Dense) ( None , 12) 3084
activation _ 16 (Activation) ( None , 12) 0
Total params: 276,492 
Trainable params: 276,492 
Non-trainable params: 0

Figure 6: Baseline FCN architecture

following hyperparameter configurations in Table 5 were evaluated and 80 
MFCC channels were used for audio feature extraction.

Hyperparameter range
Dense Layer size 64, 128, 256
Activation Fn. elu, relu

Dropout 0.3, 0.4, 0.5 , 0.6

Table 5: Hyperparameter selection for the CNN
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4 Results

This section elaborates on the results obtained from the various config­
urations in the Experimental Setup. Based on these results a final model is 
developed which is best suited for our current application objectives.

4.1 Experimental Setup Results

4.1.1 Feature Performance:

During Feature extraction, two choices of features were used. Results 
from the experiments showed that GTCCs do not perform better than MFCCs 
with respect to classification accuracy on the test set.

The model trained using GTCCs takes about seven times more space 
than the model trained using MFCCs. Also, the processing time for a single 
sample is much lower when using MFCCs. Even if the number of channels are 
increased in the favor of classification power, there would be a proportionate 
increase in the number of trainable parameters of the model which would 
result in bigger model sizes and slower processing speeds as seen in Table 6. 
Figure 7 and Figure 8 represent the accuracy plots while using MFCCs and 
GTCCs respectively. It can be observed that there is a significant improve­
ment in accuracy when MFCCs are used. We can therefore conclude that 
further analysis using GTCCs would not be fruitful for the final inference 
task.

Feature Performance
Features channels accuracy processing

time(s)
memory foot 
print(mb)

MFCCs 40 0.8424 0.168 10.175
GTCCs 64 0.6532 0.735 76.127

Table 6: Performance of MFCCs and GTCCs
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Figure 7: Accuracy of Baseline model using MFCCs as audio features

Figure 8: Accuracy of Baseline model using GTCCs as audio features

In Figure 7 and 8, we observe that the accuracy is higher on the test 
data than on the training data. This is a commonly seen phenomenon when 
using dropout. Dropout is a destructive process that limits the amount of 
information that is passed on to the subsequent layers in the network. This 
causes a higher amount of loss for the training set because it is harder for the
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network to predict the right answers. However, for the test set, all the neurons 
in the network are available which may increase the classifier performance.

4.1.2 SVM  vs Neural Networks:

For the SVM classifier, a final accuracy of 0.830 was obtained on our 
dataset using MFCCs as input features. Since this value is slightly lower 
than what we had obtained when the Baseline Neural Network model was 
used (0.8434), I discarded this approach in favor of Neural Networks for 
improving classification power. Moreover, SVM’s require fewer hyperparam­
eters and are less flexible than Neural Networks.

4.1.3 Fully Connected vs Convolutional layers:

Preliminary results as seen in Figure 9 and Figure 10 show that classi­
fication power is slightly higher in the case of the CNN architecture(0.8709 
vs 0.8644 after 100 epochs) when compared to a Fully Connected Network. 
When training, a percentage of the features are set to zero (50% in our case 
since we are using Dropout(0.5)). When testing, all features are used (and 
are scaled appropriately). So the model at test time is more robust - and can 
lead to higher testing accuracies.

Figure 9: Accuracy of model with CONV layers and dropout trained over 
100 epochs
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Figure 10: Accuracy of model with Fully Connected layers and dropout 
trained over 100 epochs

In Figure 11 and Figure 12, we observe that even though the accuracy 
estimates for both the architectures are comparable, the loss function for the 
Fully Connected network flattens much more quickly and stabilizes around a 
value of 0.8. On the other hand, the loss function for a CNN based architec­
ture flattens at a value of 0.5. We can infer that the accuracy estimates can 
be improved for the CNN by fine-tuning the hyperparameters and training 
the model further.
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Figure 11: Loss plot of model with CONV layers and dropout trained over 
100 epochs

Figure 12: Loss plot of model with Fully Connected layers and dropout 
trained over 100 epochs

4.2 Final Model
Based on the results from the experiments, we can conclude that Neural 

Network architectures with convolutional layers work best for our problem
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statement. After running the Grid Search routine, the Talos framework out­
put for the accuracy statistics can be seen in Figure 13.

round_epochs v a ljo s s val_acc loss acc dense1_neuron activation conv_dropout

0 50 0.190016 0.954707 0.162751 0.944385 128 elu 0.6

1 50 1.143146 0659657 1.417435 0.481801 64 relu 0.6

2 50 0.209023 0.934325 0.278226 0902650 64 elu 0 6

3 50 0.000710 0.999676 0.057503 0.983985 256 elu 0 3

4 50 0.201600 0.945325 0.481439 0.829370 256 relu 0.5

5 50 0.512541 0880298 0.965892 0.648064 64 relu 0.4

6 50 0.377069 0.897444 0.791513 0698923 128 relu 0 5

7 50 0.027771 0.992883 0.121070 0960885 128 elu 0 5

8 50 0.017686 0.995147 0.088878 0.970785 128 elu 0.4

9 50 0.047390 0.994177 0.269446 0.901097 256 relu 0 3

10 50 0.021293 0992883 0.150551 0949432 64 elu 0.4

11 50 0.008392 0.996765 0.069199 0979618 256 elu 0.4

12 50 0.065839 0.982530 0.126634 0.960982 256 elu 0.6

13 50 0.201029 0.941766 0.408076 0.858197 256 relu 0.6

14 50 0.191221 0.956325 0.548995 0.790644 128 relu 0 4

15 50 0.106640 0.977354 0.433072 0841017 128 relu 0 3

16 50 0.731743 0820770 1.067644 0.603319 64 relu 0 5

17 50 0.497789 0.890650 0.997624 0.622052 84 relu 0 3

L1& 50 0.000815 0.999676 0.061412 0.978841 128 elu
19 50 0.073121 0986412 0.290658 0.893526 256 relu 0.4

20 50 0.098154 0967972 0.208236 0 927788 64 elu 0 5

21 50 0.006167 0.997735 0.104379 0.964670 64 elu 0.3

22 50 0.045028 0.987706 0.089957 0.974473 256 elu 0.5

23 50 0.384028 0.896797 0.631024 0785208 128 relu 0 6

Figure 13: Best Set of Hyperparameters

Based on the results obtained in Figure 13, the configurations used in 
entries 3 and 18 gave the highest accuracy on the validation set(vaLacc). 
I used 128 hidden nodes on the penultimate layer, a dropout rate of 0.3 
and the elu activation function as used in entry 18. This is preferred over 
the configuration in entry 3 because of the smaller number of neurons in the
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dense layer which speeds up the training process and does not compromise on 
classification power. Using Keras’ model summary feature, the architecture 
of the Final CNN model can be seen as given in Figure 15. An intuitive way 
of visualizing NN-architecture schematics [50] can be seen in Figure 14.

A single input audio file has a sampling rate 11025 Hz, 16 bit depth, 
mono channel and length of 4 seconds. When MFCCs are extracted, I used 
a Hann window of hop length 512. For consistency, the windowed signals are 
padded with zeros and restricted to a length of n f f t .  The value of n _ fft  
is preferably a power of 2 for speeding up the FFT process. The number of 
rows in the Fourier transform matrix can be given as (1 +  n ff t/ 2 ) .  In our 
case, I choose a value of 2048 for n _ fft  which corresponds to a duration of 
186 milliseconds for an 11025 Hz sampling rate audio input. When 40 MFCC 
channels are used, I transformed the 4 second audio clip into a 2-dimensional 
vector of size (40 x 87). Each of these vectors is converted into an image-like 
representation which can be processed using CNNs. It is possible do this by 
reshaping them to add a depth of 1. This is analogous to a single channel 
(40 x 87) image. For the first convolutional layer, I used 16 filters to obtain 16 
feature maps. Every pixel in each of the feature maps is an output of the con­
volutional layer. This convolutional layer extracts patterns like simple lines. 
I doubled the number of filters in the next convolutional layer (conv2dA) so
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Layer (type) Output Shape Param #
conv2d_3 (Conv2D) ( None , 40, 87, 16) 80
batch-normalization _2 (Batch ( None , 40, 87, 16) 64
max_pooling2d _3 (MaxPooling2 ( None , 20, 43, 16) 0
dropout_4 (Dropout) ( None , 20, 43, 16) 0
conv2d_4 (Conv2D) ( None , 20, 43, 32) 2080
max_pooling2d _4 (MaxPooling2 ( None , 10, 21, 32) 0
dropout_5 (Dropout) ( None , 10, 21, 32) 0
flatten_2 (Flatten) ( None , 6720) 0
dense_3 (Dense) ( None , 128) 860288
dropout_6 (Dropout) ( None , 128) 0
dense_4 (Dense) ( None , 12) 1548
Total params : 864,060 
Trainable params: 864,028 
Non-trainable params: 32

Figure 15: Final CNN architecture

that structures with higher complexity can be extracted. The outputs from 
the convolutional layers, followed by the pooling layer (max_pooling2d_3) 
represent space invariant, low level features extracted from the data. While 
these outputs can directly be connected to the final Fully Connected layer 
(dense_4), another Fully Connected layer (dense-3) can be added. This ex­
tracts non-linear relationships between higher level features. A  dense layer 
size of 128 gave the best accuracy estimates for the model architecture. The 
final layer gives the probabilities associated with each of the 12 classes in our 
dataset.

Upon training the CNN model over the augmented dataset, with a batch 
size of 20 and 100 epochs, we obtain the following accuracy and loss plots as 
seen in Figure 16 and Figure 17. Since we are using the augmented dataset 
instead of the original dataset, we may observe a drop in overall accuracy 
but the classifier thus obtained will be invariant of deformations and is less 
likely to overfit:
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Figure 16: Model Accuracy

While accuracy is a very intuitive measure of performance, it alone is 
generally not enough to evaluate model performance effectively. Accuracy 
is simply the ratio of observations that are predicted correctly to the total 
number of observations. This metric works best when the dataset is mostly 
symmetric and there are equal numbers of false positives and false nega­
tives. Optimizing purely for accuracy makes the model much more prone to 
detecting falsely labelled examples as positive. Intuitively, optimizing for a 
metric that mitigates the number of false positives is not ideal either as the 
number of true positives might be diminished as a result. To account for the
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model accuracy (correct predictions) and robustness (reducing the number 
of misses), we use a metric called the F1 score. The F1 score is the harmonic 
mean of two other metrics known as precision and recall.

Precision: Precision is the ratio of correctly labelled positive results to 
the total number of positive results predicted. This metric basically gives 
the number of predicted chimpanzee calls which were actually chimpanzee 
calls. This metric correlates to low false positive rates. Precision can be 
given as:

Recall: Recall is the ratio of positive observations predicted to the total 
number of relevant samples (observations that should have been identified 
as positive). This metric tells the number of chimpanzee calls predicted 
correctly out out the total number of chimpanzee calls in the dataset. Recall 
can be given as:

To aggregate precision and recall, the harmonic mean is a better estimate 
than the arithmetic mean because the harmonic mean negates the effect of 
extreme values. The F1 score is given as:

In Listing 1, the 10th and the 11 th classes represent chimpanzee ‘shrieks’ 
and ‘hoots’ respectively. Since the two sounds have starkly different fre­
quency ranges, it is imperative to separate them into two classes for model 
performance. The Classification Report created using sklearn metrics is given 
in Listing 1. Also, an intuitive way of visualizing the model accuracy is by 
using a Confusion Matrix. The Confusion matrix is a table layout where 
rows represent observations in the predicted classes while columns represent 
observations in the actual classes. The Confusion Matrix output and the 
Normalized Confusion Matrix for the classifier is shown in Figure 18 and 
Figure 19 respectively. Both of these representations have been generated 
using the confusion matrix feature of scikit-learn.
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precis ion reca l l f1 —score support

0 0.61 0.88 0.72 1562
1 0.85 0.81 0.83 388
2 0.85 0.75 0.80 1415
3 0.94 0.78 0.86 1213
4 0.83 0.75 0.79 1331
5 0.84 0.81 0.83 1482
6 0.82 0.94 0.87 237
7 0.69 0.84 0.76 1321
8 0.95 0.84 0.89 1356
9 0.89 0.75 0.82 1508

10 0.87 0.92 0.89 1683
11 0.90 0.69 0.78 816

accuracy 0.81 14312
macro avg 0.84 0.81 0.82 14312

weighted avg 0.83 0.81 0.81 14312
Listing 1: Classification Report

Figure 18: Confusion Matrix
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We observe that for both of the chimpanzee shrieks and hoots, fairly good 
F1 scores of 0.89 and 0.78 are obtained. When all the classes are taken into 
consideration, we get a 12 x 12 confusion matrix with the Y  axis showing 
the true labels in the test set and the X  axis showing the class assigned to 
an observation associated with that true label. Each element (i, j)  in the 
matrices represent the number/proportion of items with an actual class i 
on the X  axis that were categorized into class j  on the Y  axis. We obtain 
a relatively good proportion (0.92) of chimpanzee shrieks labelled to their 
actual class. Even though this proportion is comparably lower for chimpanzee 
hoots (0.69), it is to be noted that a significant proportion of hoots are 
classified as shrieks (0.25). This result is expected since the chimpanzee 
hoots are acoustically similar to chimpanzee shrieks than any of the other 
classes in the dataset.

Figure 19: Normalized Confusion Matrix
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5 ARU: Realtime Detection on Raspberry Pi

The Raspberry Pi 3 Model B+ is a product in the Raspberry Pi 3 fam­
ily. It hosts a Broadcom BCM2837B0, Cortex-A53 (ARMv8) 64-bit SoC 
@ 1.4GHz CPU and 1GB LPDDR2 SDRAM. It can be solar powered and 
attached with a desirable microphone to capture audio inputs.

5.1 Audio Preprocessing and Inference
As of writing, the latest 1.9 release of TensorFlow can be installed on the 

Raspberry Pi 3 from pre-built binaries using Pythons pip package system. 
The inference engine uses the Librosa package in Python3 for audio feature 
extraction.

Since our Neural Network is designed to take 4 seconds of audio as in­
put for feature extraction, we need to chunk the audio input stream into 
4-second blocks before performing the inference. The input audio signal is 
downsampled to 11kHz with a bit depth of 16 and a single channel. To detect 
chimpanzee calls every second, each 1-second chunk of the audio stream is 
appended to the last 3 seconds of the the audio stream input as shown in 
Figure 20. By doing so, the Neural Network has the requisite input vector 
size and audio input is scanned every second. If a chimpanzee call is detected 
above a certain probability threshold, the respective audio clip is saved onto 
the local memory of the Raspberry Pi. These clips can be periodically ex­
tracted for further analysis.

Figure 20: Inference Window

5.2 Performance on a real-time application
When inference is performed in realtime, I obtained the predictions ev­

ery second with a processing time of 0.91 seconds on an average using the
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Raspberry Pi. Most of the chimpanzee calls were accurately detected with 
their timestamps except for some instances which qualitatively resembled 
dog barks more than chimpanzee calls. The above approach can also be used 
to scan a folder for audio files and identify chimpanzee vocalizations in the 
clips. Additionally, the timestamps and the class prediction probabilities can 
be logged into a .txt file for identifying the file names and the four second 
time windows in which chimpanzee calls were detected.
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6 Conclusion

In this study, we have seen the applicability of Neural Network architec­
tures that can be deployed and used for inference on devices with limited 
computational capability. With detection possible in realtime, this approach 
is a significant improvement over the previous ASR systems.

Using an audio repository consisting of chimpanzee recordings, I initially 
classified them into two different kinds of vocalizations - ’shrieks’ and ’hoots’. 
I then used Urbansound8K, a publicly available dataset with 10 labelled 
classes and merged it with the labelled chimpanzee audio recordings. The 
new dataset was then cleaned and normalized for integration flexibility. In 
order to determine the best classifier given the limited compute capabil­
ity, I evaluated simple sound classification approaches using Support Vector 
Machines, Fully Connected Neural Networks and Convolutional Neural Net­
works. Even though the training and inference times are a fraction of what 
Neural Network architectures would take, SVMs gave an accuracy of 0.830 
which was deemed as unsatisfactory. On the other hand, the usage of Fully 
Connected layers gave comparable accuracy estimates but had significantly 
large compute requirements. Based on our observations, Convolutional Neu­
ral Networks brought together good accuracy estimates, low memory foot­
prints and fast prediction times with the right choice of audio features. It 
is also concluded that MFCCs perform better, have faster processing speeds 
and lower memory requirements for our classification task.

The dataset was then subjected to various data augmentation approaches 
to make the classifier robust and invariant to certain deformations. I obtained 
a dataset consisting of 57246 training examples with about 4700 samples per 
class. The final classifier gave an accuracy of 81.18% on the validation set 
and F1 scores of 0.89 and 0.78 for the two chimpanzee classes while requir­
ing just 10MB of storage. The classifier is robust and identifies chimpanzee 
vocalizations in a variety of environmental conditions.

Previously, audio data was recorded over a range of hours and relayed 
back to a central processing unit where it is processed for further analy­
sis. With the new approach, audio data of interest can be stored onto the 
onboard memory while rejecting the rest. This allows for recordings at a
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higher bitrate, which can subsequently improve the quality of training data 
for future classifiers. Moreover, as and when a chimapnzee call is recorded, 
researchers can react quickly thus opening up a host of possibilities for pri- 
matology study.
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7 Future Work

Future work based on this study can be categorized into classifier improve­
ment and localization. While the classifier can be used to detect chimpanzee 
vocalizations within locally stored audio files or natural environments, it is 
based on a relatively low quality of input data (sampling rate of 11025 Hz). 
This can be improved in the future using recordings with high sampling 
and bit rates. With the ever increasing compute capacity of small, low cost 
computers, cutting edge classification approaches that use Recurrent Neural 
Networks (RNNs) can also be used. An approach using RNNs would simply 
require sound samples of interest and ambient background sounds for their 
effectiveness.

It is possible to localize the chimpanzee vocalizations by exporting the 
project’s image file onto multiple Raspberry Pi devices. When 3 or more 
devices are used and their spatial coordinates are known, we can determine 
the source location. Since the speed of sound in air is 343 meters per second 
at standard temperature and pressure, the timestamp at which the sounds 
are detected can give us an approximate distance between the source and the 
receiver after taking latency and processing time into consideration. Using 
radio modules like LoRa and LoRaWAN for the Raspberry Pi, the detection 
triggers can be transmitted to a centralized computing engine where it is 
possible to triangulate the source of the sound.
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Figure 21: Localization

Effective localization of chimpanzees based on their sounds allows for 
tracking their movements at a distance without any interference. Some as­
pects of chimpanzee behavior like population densities, grouping patterns 
and broader home ranges can be determined with further analysis of the 
localized sounds. While this project lays out an outline for detecting chim­
panzee calls using simple Neural Network architectures, it can also serve as a 
framework for identifying other sounds in nature. The classification module 
can be redesigned to detect other fauna and possibly even poachers.
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