
Channel Islands
CALIFORNIA STATE UNIVERSITY

An Ensemble Approach to Robotic Exploration 
With Deep Reinforcement Learning

A Thesis Presented to

The Faculty of the Computer Science Department

In (Partial) Fulfillment

of the Requirements for the Degree

Masters of Science in Computer Science

by

Student Name:
Gabriel Orellana

Advisor:
Jason Isaacs

May 2021



© 2021
Gabriel Orellana
ALL RIGHTS RESERVED



APPROVED FOR MS IN COMPUTER SCIENCE

Advisor: Jason Isaacs
May 26, 2021

Date

Brian Thoms
May, 26,2021

Date

Bahareh Abbasi
May 26, 2021

Date

APPROVED FOR THE UNIVERSITY

Interim Dean Dr. Jill Leafstedt

5/28/2021
Date



Non-Excluslve Distribution License

In order for California State University Channel Islands (CSUCI) to reproduce, translate and 
distribute your submission worldwide through the CSUCI Institutional Repository, your agreement to 
the following terms is necessary. The author(s) retain any copyright currently on the item as well as 
the ability to submit the item to publishers or other repositories

By signing and submitting this license, you (the author(s) or copyright owner) grants to CSUCI the 
nonexclusive right to reproduce, translate (as defined below), and/or distribute your submission 
(including the abstract) worldwide in print and electronic format and in any medium, including but not 
limited to audio or video.

You agree that CSUCI may, without changing the content, translate the submission to any medium 
or format for the purpose of preservation.

You also agree that CSUCI may keep more than one copy of this submission for purposes of 
security, backup and preservation.

You represent that the submission is your original work, and that you have the right to grant the 
rights contained in this license. You also represent that your submission does not, to the best of 
your knowledge, infringe upon anyone's copyright. You also represent and warrant that the 
submission contains no libelous or other unlawful matter and makes no improper invasion of the 
privacy of any other person.

If the submission contains material for which you do not hold copyright, you represent that you have 
obtained the unrestricted permission of the copyright owner to grant CSUCI the rights required by 
this license, and that such third party owned material is clearly identified and acknowledged within 
the text or content of the submission. You take full responsibility to obtain permission to use any 
material that is not your own. This permission must be granted to you before you sign this form.

IF THE SUBMISSION IS BASED UPON WORK THAT HAS BEEN SPONSORED OR SUPPORTED 
BY AN AGENCY OR ORGANIZATION OTHER THAN CSUCI, YOU REPRESENT THAT YOU 
HAVE FULFILLED ANY RIGHT OF REVIEW OR OTHER OBLIGATIONS REQUIRED BY SUCH 
CONTRACT OR AGREEMENT.

The CSUCI Institutional Repository will clearly identify your name(s) as the author(s) or owner(s) of 
the submission, and will not make any alteration, other than as allowed by this license, to your 
submission.

Title of Item: An Ensemble Approach to Robotic Exploration with Deep Reinforcement Learning 

3 to 5 keywords or phrases to describe the 

item: Master's thesis-Computer Science

Author(s) Name (Print): Gabriel Orellana

Date

This is a permitted, modified version of the Nonexclusive Distribution 
License from MIT Libraries and the University of Kansas.



An Ensemble Approach to Robotic 
Exploration With Deep Reinforcement 

Learning

Gabriel Orellana

May 21, 2021

Abstract

Artificial intelligence is one of the fastest growing areas of develop­
ment today. Its power is being applied to a growing quantity of areas, 
by an increasing number of companies. Deep reinforcement learning 
(DRL) has played a large role in the advances made in these areas. 
One of the areas where DRL is being applied is that of autonomous 
robotics. From self-driving cars to robotic assistants, DRL has been 
shown to be effective for training autonomous actors to explore new 
areas. However, the majority of approaches use a single model for the 
exploration process. This can lead to reduced performance in envi­
ronments in which the weaknesses of the chosen model are amplified. 
This paper introduces an ensemble approach to the application of DRL 
in autonomous robotic exploration, in an attempt to improve perfor­
mance. Instead of a single model, I utilize three independently trained 
actor-critic models working in tandem, in an attempt to mitigate the 
weaknesses an individual model can have. Working with a 2D sim­
ulation environment, the individual component models of the ensem­
ble, consisting of stable baselines implementations of A2C, PPO2, and 
ACKTR, were trained in a variety of simulated environments. The 
three ensemble implementations are then evaluated against these indi­
vidual model components in a series of test environments. The results 
show that ensemble methods can produce better results, depending 
on implementation, and serve to reduce the downsides of individual 
model performances without sacrificing overall performance.



Contents

1 Introduction 1
1.1 Motivation ................................................................................ 1
1.2 Contribution ............................................................................. 3
1.3 Outline ....................................................................................... 4

2 Background 5
2.1 Machine Learning ................................................................... 5
2.2 Reinforcement Learning ...................................................... 6

2.2.1 Reinforcement Learning Components .............................. 7
2.2.2 Markov Decision Process ...................................................... 7
2.2.3 Policy ....................................................................................... 8
2.2.4 Reward .................................................................................... 9
2.2.5 Value Function ...................................................................... 9
2.2.6 Environment .......................................................................... 10

2.3 Deep Learning .......................................................................... 12
2.3.1 Back Propagation ................................................................... 13

2.4 Deep Reinforcement Learning ........................................... 14
2.5 Ensemble Approach ................................................................ 14

3 Objective 15

4 Implementation 16
4.1 Environment ............................................................................. 16

4.1.1 Robot ....................................................................................... 16
4.1.2 Roblearn Simulation2D ......................................................... 18
4.1.3 Gym ........................................................................................... 20
4.1.4 Gym Environment ................................................................ 21
4.1.5 Reward .................................................................................... 21

4.2 Models ....................................................................................... 22
4.2.1 Stable Baselines ....................................................................... 22
4.2.2 Actor-Critic Algorithms ...................................................... 23
4.2.3 Value-Based vs Policy-Based Methods ........................... 23
4.2.4 Model Selection ....................................................................... 24
4.2.5 Advantage Actor-Critic ......................................................... 24
4.2.6 Proximal Policy Optimization 2 ........................................ 24

i



4.2.7 Actor Critic using Kronecker-factored Trust Region . . 25
4.3 Training .................................................................................... 26

4.3.1 Tools ........................................................................................... 26
4.3.2 Vectorized Training Environments ..................................... 27
4.3.3 Map Selection .......................................................................... 27
4.3.4 Training Order ....................................................................... 28
4.3.5 Episodes and Timesteps ...................................................... 29

4.4 Policy ....................................................................................... 30
4.4.1 Model Parameters ................................................................ 30
4.4.2 Learning Rate .......................................................................... 30
4.4.3 Entropy Coefficient ................................................................ 31
4.4.4 Final Values .............................................................................. 31

4.5 Training Results ...................................................................... 32
4.5.1 A2C Training .......................................................................... 33
4.5.2 PPO2 Training ....................................................................... 34
4.5.3 ACKTR Training .................................................................... 35

4.6 Ensemble Method ................................................................... 36
4.6.1 Random Method .................................................................... 37
4.6.2 Vote Method .......................................................................... 38
4.6.3 Probability Method ................................................................ 39

4.7 Evaluation ................................................................................ 39

5 Results 41

6 Conclusion and Future Work 43
6.1 Conclusion ................................................................................. 43
6.2 Future Work ............................................................................. 44

6.2.1 Ensemble Improvements ...................................................... 44
6.2.2 Training Improvements ......................................................... 45
6.2.3 Hyperparameter Optimization ............................................ 45
6.2.4 Parallelization .......................................................................... 45
6.2.5 Map Improvements ................................................................ 45
6.2.6 Applications ............................................................................. 46

References 47

ii



List of Figures

1 SubT Environment Example [7] ........................................... 3
2 Bellman’s Equation [8] ........................................................ 10
3 Motorcycle Training Course Layout [18] .......................... 11
4 Agent-Environment Interaction [19] ................................... 12
5 An example map in the Roblearn environment. The Robot is

shown in Red, Laser Beams in Green, and the Target Point in 
Magenta [8].............................................................................................. 19

6 Training Maps ........................................................................................ 27
7 Evaluation Maps ................................................................................. 28
8 Visualization of Training on Twelve Maps Simultaneously . . . 29
9 A2C Training Results .......................................................................... 34
10 PPO2 Training Results Showing Large Spikes in Advantage 

and Loss ........................................................................................ 35
11 ACKTR Training Results ................................................. 36
12 Ensemble Method .................................................................. 37

iii



1 Introduction

1.1 Motivation

The rise of Artificial Intelligence (AI) and machine learning has been swift 
and impactful. The technology has grown rapidly and expanded its use to a 
multitude of diverse areas which affect the everyday life of people worldwide. 
These impacts are hard to avoid and have drawn my interest in a variety of 
their implementations.

In gaming, AI was initially unable to compare with human. It has now 
been developed to the point where a machine can not only defeat the top 
chess masters, but also defeat the top human players at the game of GO [1], 
which was originally considered so complex that some believed computers 
would never reach the point of mastery [2].

In healthcare, AI has begun to make its impact felt, with its ability to 
review vast quantities of medical data rapidly and provide analysis and in­
sights to medical professionals. This enables increased accuracy in diagnoses 
and increased effectiveness in treatments, not to mention the impacts in re­
duction of costs. Additionally AI has shown effectiveness in predicting health 
issues and possible adverse reactions to treatments and medication [3]. AI 
has been used in Dermatology, Radiology, Screenings, Psychiatry, and Dis­
ease Diagnosis, among other fields, with uses such as classification programs 
which can identify cancerous tumors in patients.

AI has also made its impacts felt in the finance industry, where it has been 
used in a variety of different ways. Companies now use machine learning to 
evaluate credit applications, underwrite loans, manage risk, analyze market 
trends, identify patterns, forecast changes, and in some cases, trade stocks 
[4]. The financial impacts of these implementations are shifting the way 
markets and business operate. AI assistants are now available for consumers 
to consult when making personal finance decisions. These utilize machine 
learning to provide advice, as well as natural language process to provide 
real time automated customer service support. AI can be used to help peo­
ple save money by identifying spending habits and suggesting changes to 
improve savings rates. It has also been used to improve cybersecurity, and 
prevent fraud.

1



One of the largest areas in which AI has had a large impact is in the area 
of robotics. Robotics spans many of the aforementioned categories and has 
widespread usage. In healthcare, AI enabled robots are being used to sanitize, 
deliver supplies, provide care and in some cases, even perform surgery[5]. AI 
robots are now being used in agriculture to help with planting, maintenance, 
and the harvesting of crops. AI classifiers can determine when to water, how 
to identify and eliminate weeds, apply pesticides to kill insect infestations, 
and pick crops all based on machine learning [6]. High profile uses of AI 
robotics such as advances towards fully self-driving automobiles are some 
of the most talked about developments. Tesla and other manufacturers are 
moving rapidly towards cars which require no human interaction in order to 
operate not only successfully, but with a higher safety than human operated 
vehicles.

Although there have been large advances in these areas, there is still 
plenty of room for improvement. Efforts are underway to improve robotic 
operation, particularly in unknown environments. The DARPA SubT Chal­
lenge [7] is one of these efforts. Its goal is to promote the development of 
new techniques which can quickly navigate through complex, underground 
environments such as the one shown in Figure 1, mapping the areas and 
identifying artifacts in them.

2



Figure 1: SubT Environment Example [7]

The resulting advancements would ideally be applied to many areas such 
as search and rescue, and disaster recovery and relief in urban and under­
ground settings. The use of robotics is key as many of these environments 
may be inaccessible or inhospitable for human relief workers due to environ­
mental hazards, but would not prohibit robotic operation. One of the key 
elements in this is the mapping of these unknown environments. Deep Rein­
forcement Learning has been shown to be effective [8] when applied to this 
domain and is thus the focus of this paper.

One of the approaches to Deep Reinforcement Learning which has been 
shown to be particularly effective is an ensemble approach. Ensemble meth­
ods in general have been shown to yield improved results in comparison to 
single models. This can be attributed to the built-in biases which can be 
found in individual models due to the way in which they operate. The use 
of multiple models reduces the impact of the individual biases.

1.2 Contribution

The goal of this paper is to show whether the application of an ensemble ap­
proach to the use of Deep Reinforcement Learning models in robotic unknown 
area exploration produces better results than the use of a single DRL model.

3



The results of this research show that ensemble methods can improve per­
formance when applied to robotic exploration of unknown areas over some 
models, and can help to mitigate the negative impact of individual model 
weaknesses. I show that the ensemble methods, depending on implementa­
tion, can outperform the majority of their component models, and in some 
environments, outperform all the component models.

1.3 Outline

In order to show this I will first go through a brief overview of the backgrounds 
for the different fields of study related to the endeavour to provide the reader 
the context of the discussion, the terms that will be used, and a cursory 
understanding of the techniques which will be applied. Having done this, I 
will then provide an explanation of the methodology used. This includes an 
overview of each of the DRL models used, an introduction to the training 
and evaluation environment, an explanation of the training process, and a 
layout of the evaluation method utilized. The results of the study will then 
be presented along with a discussion of their implications, and a presentation 
of the limitations, and possible future work.

4



2 Background

To properly set the stage for this topic, it is worthwhile to examine the var­
ious fields of study relating to the topic at hand so that the reader may be 
familiarized with these foundations and better understand the process used 
in this research. Those areas bearing primary relevance are Machine Learn­
ing, Reinforcement Learning (RL), Deep Learning, and, Deep Reinforcement 
Learning. In addition to this, an examination of the use of ensemble methods 
in reinforcement learning is also provided.

2.1 Machine Learning

L.G. Valiant, who wrote one of the early seminal papers on the topic, de­
scribed Machine Learning with the following [9]: “a program for performing 
a task has been acquired by learning if it has been acquired by any means 
other than explicit programming.” Machine learning deals with the creation 
of programs which have the ability to learn and improve their capabilities as 
their experience/training grows. Machine learning provides the capability to 
analyze vast quantities of data. Murphy defines machine learning as [10] “a 
set of methods that can automatically detect patterns in data, and then use 
the uncovered patterns to predict future data, or perform other kinds of de­
cision making under uncertainty." Tracing its origins back to 1959, when an 
IBM engineer named Arthur Samuel coined the term [11], Machine Learning 
has grown in leaps and bounds over the last 70 years. Some of the high­
est profile jumps made via machine learning were with regards to teaching 
machines to play games, and several of these lead to the development of 
key algorithms. In the 1950s Samuel developed a program which could play 
checkers [12] and the program he created eventually developed into the now 
famous min-max algorithm. Checkers was picked due to the simplicity of the 
rules which Samuel noted [12], “permits greater emphasis to be placed on 
learning techniques.”

Within Machine Learning, there are three subcategories, differentiated in 
the manner in which the learning is achieved. These are Supervised, Unsu­
pervised, and Reinforcement Learning. Supervised (or predictive) learning 
models assume there is a supervisor who divides the training materials into 
classes and then the program is trained by evaluating the features presented 

5



and their correlation to the provided classes. As laid out by Murphy [10], 
“the goal is to learn a mapping from inputs x to outputs y, given a labeled 
set of input-output pairs D = (xi, yi)iN=1 where D is called the training set, 
and N is the number of training examples [10].

In unsupervised learning, the program is not provided the classes, but 
rather it attempts to define the classes and relevant features by finding those 
features which have a higher data variance and provide separability [13]. In 
this form of learning, using the only thing provided is the inputs, D = (xi)iN=1 , 
and it is up to the model to extract information deemed "useful" from the 
data [10].

2.2 Reinforcement Learning

Reinforcement learning is distinguished from the two aforementioned ma­
chine learning methods in that it emphasizes learning by the program from 
“direct interaction with its environment, without relying on exemplary super­
vision or complete models of the environment [14].” Reinforcement learning, 
in its essence, is the presentation of a situation in which the program is given 
an environment in which it employs trial and error, in order to solve the given 
problem. A state with possible actions is presented, and the program is given 
a reward or penalty for whatever action it takes. This reward policy, as it 
is referred to, is developed by the creator of the program, and is the limit 
of the instructions given to the program. The program is given the policy 
and instructions to maximize the final reward. Based off the state input and 
the current state of the agent, an action is taken, typically randomly selected 
from the available actions. As a result of this action, the environment and 
state of the agent are updated, and a reward value is given. The program 
then explores the environment and by trial-and-error method and attempts 
to learn the best method for maximizing reward [15]. Additionally, in some 
cases the performance of the agent may be measured against the optimal 
performance. The difference between the two is referred to as regret. This 
measure gives perspective on the long-term effects of individual actions and 
allows the incorporation of actions which may initially have negative effects, 
but over the long term maximize value. Reinforcement learning differs from 
supervised and unsupervised learning in that it has a trade-off between ex­
ploration and exploitation [16]. It is essential for the reinforcement learning 
agent to properly balance these two in order to obtain optimal results. Sutton

6



describes this well:

To obtain a lot of reward, a reinforcement learning agent must 
prefer actions that it has tried in the past and found to be effective 
in producing reward. But to discover such actions, it has to try 
actions that it has not selected before. The agent has to exploit 
what it has already experienced in order to obtain reward, but it 
also has to explore in order to make better action selections in the 
future. The dilemma is that neither exploration nor exploitation 
can be pursued exclusively without failing at the task. The agent 
must try a variety of actions and progressively favor those that 
appear to be best [16].

Finding this balance can be extremely difficult and poses one of the major 
obstacles to success in this kind of machine learning. To add to the problem, 
in stochastic environments, the agent must try each action a multitude of 
times in order to properly determine the associated reward. This difficulty 
is encountered in most reinforcement learning endeavours, the author’s in­
cluded.

2.2.1 Reinforcement Learning Components

There are four primary components of reinforcement learning, the policy, 
the reward, the value function, and the environment. In order to better 
understand each of these, it is worthwhile to examine the Markov Decision 
Process first.

2.2.2 Markov Decision Process

The Markov Property, named after Russian mathematician Andrey Markov, 
is used in reference to a stochastic process which has a memory-less property 
to it. A process which is stochastic has the Markov property if, given the 
present state, the future states of the process do not depend on the past, 
but only on the present state. The probability of the succeeding state St+1 
depends only on the current state St and not on prior states S1, S2, ..., St-1 
[17]. The Markov property is important in reinforcement learning because 
in order for actions and values in reinforcement learning to be effective and 

7



informative, the individual state representations must themselves be infor­
mative. Bringing in the concepts of reward, action, and discount, a Markov 
Decision Process (MDP) can be defined as follows [17]:

• S is a finite set of states.

• A is a finite set of actions.

• P is the state transition probability matrix,
Psas0 = P[St+1 = s0 |St = s, At = a] where s is a state and a is an action

• y ^ [0,1] is called the discount factor.

• R:Sx A ^ R is a reward function

Since each learning episode in reinforcement learning is able to be depicted 
as a sequence of states, actions, and rewards, and each state depends only 
upon the prior states and actions taken, and the actor is ignorant of which 
state comes next, we can say that the process satisfies the Markov Property. 
Thus we can describe the process used in reinforcement learning as a Markov 
Decision Process.

2.2.3 Policy

Informally, the policy in reinforcement learning is the set of rules which 
the agent follows to go from the state data to an action choice [16]. More 
formally, the mathematical definition of a reinforcement learning policy is 
defined in terms of the Markov Decision Process. With the above definition 
of the Markov Decision Process as a tuple of the form (S, A, P , y, R), we can 
define a policy as follows[16]:

A policy n is a distribution over actions given states,

n(a|s) = P[At = a|St = s]

The aim of reinforcement learning is to discover the best policy, that is, the 
policy which maximizes the agents reward. This policy can be anything from 
a search process, to a lookup table or process requiring complex calculations 
[16].

8



2.2.4 Reward

The reward in reinforcement learning is a value produced by the environment 
as a result of the action of an agent. As previously stated, the goal of the 
agent is to maximize the reward, and the goal as a whole is to develop a 
policy which results in a maximal goal. Rewards in reinforcement learning 
are much like the rewards used in behavioural development. For example, 
when training a dog to perform a trick such as “roll over", when the dog 
performs the correct action (rolling over) you give the dog a treat (reward). 
If the dog performs an incorrect action, the reward can be either nothing, or 
something like a verbal admonishment. Whatever the reward is, the purpose 
is to indicate to the agent (dog in this case) that the correct (or incorrect) 
action was taken. The reward provides information used to modify the policy. 
If the action results in a poor reward, the policy should (often) be updated to 
prefer an action which produces a better reward for the same state, and vice 
versa. Ideally, the training continues with the dog learning that it receives 
maximal reward when it performs the correct action immediately, until the 
task has been mastered i.e. the agent has been trained and has developed 
the optimal policy.

2.2.5 Value Function

As opposed to the reward, the value function is a determinant of long-term 
success. The value function is a predictor of the future rewards possible 
given the current state [16]. As Sutton states [16], “rewards determine the 
immediate, intrinsic desirability of environmental states, values indicate the 
long-term desirability of states after taking into account the states that are 
likely to follow and the rewards available in those states." This is analogous 
to delayed gratification in human behavior. Eating the entire cake might 
generate an immediate reward of the enjoyment the act of eating provides, 
however, knowledge of the long term ramifications of this action (the value 
function) tells us that there will be negative effects of this that outweigh this 
short term reward (weight gain, upset stomach, etc.).

9



Figure 2: Bellman’s Equation [8]

As shown in Figure 2, we can write the value function mathematically, 
where a is the action, and s is the state, as (Q(s, a)). The value function 
is also a function of the environment, like the reward. As Surmann notes, 
“it appropriately rewards each decision and future states - that is the transi­
tion - to evaluate the V(s) and Q(s,a) according to the Bellman Equation [8]."

In a Markov Decision Process with n states, there are a corresponding 
number of linear equations for the n unknown value functions. Using dy­
namic programming, these equations can be solved to generate the optimal 
value function, that is, the value function which dictates the best obtainable 
performance in the MDP [17].

2.2.6 Environment

The Environment is the final component of reinforcement learning. When 
referring to the environment, we typically mean a model of the environment 
in which the agent is ultimately expected to operate. It may not reflect the 
actual environment in all its details, but rather, it provides learning cues 
which allow the agent to learn how to behave in the actual environment. A 
good analogy for this would be a motorcycle training course.

10



Figure 3: Motorcycle Training Course Layout [18]

The course does not reflect the actual environment a motorcycle rider 
would likely encounter in the real world. Few or no roads follow a complex 
pattern like that in Figure 3. However, this model of the environment en­
ables the rider to develop the skills they would need to handle the array of 
diverse obstacles and events which they may possibly encounter throughout 
their riding lifetime. So to with reinforcement learning environments, the 
environment should present to the agent those things which will allow it to 
make the necessary inferences about the effects of its actions and the result­
ing states [16]. The MDP is the mathematical framework which describes 
an environment. It provides the current state of the agent, including all the 
inputs this entails, as well as the reward value that results from the agent’s 
actions.

11



Figure 4: Agent-Environment Interaction [19]

Figure 4 shows the interaction between the Agent and the Environment. 
In order for reinforcement learning to be effective, the training environment 
must model the actual environment in such a way that the agent can transi­
tion to the actual environment for validation and perform well.

2.3 Deep Learning

As Machine Learning developed, more complex problems were targeted. The 
initial implementations of Machine Learning algorithms were too inefficient 
to feasibly tackle these. The method used by Samuel, for example, required 
mapping values to all possible positions of pieces on the checkerboard. How­
ever, for games such as chess or GO, the number of positions is exponentially 
higher than in checkers. In general, conventional techniques lacked the ability 
to process raw data [20]. As time progressed, the advances in computational 
technologies provided new avenues for tackling these more advanced prob­
lems. This is where Deep Learning (DL) techniques began being developed. 
Deep learning is a form of machine learning which utilizes multiple layers 
to extract higher level feature information [21]. It has been shown to be 
particularly effective when implemented with artificial neural networks. The 
learning process used with DL are primarily supervised, while effective un­
supervised deep learning is still a goal of the community. Deep learning has 
increased in effectiveness as processing power has grown, allowing the uti­
lization of increasing numbers of layers and feature input [22]. Deep learning 
addresses the problem of how to deal with processing enormous quantities of 
data when using learning algorithms.

Deep Learning traces its origins back to 1943, when Walter Pitts and War­

12



ren McCullock created a computer model of the neural networks of the human 
brain. They achieved this by mimicking the thought process of humans us­
ing a combination of mathematics and algorithms they dubbed "threshold 
logic."[9] Following this development, in the 1960 Henry J. Kelley developed 
what is considered the basics of a continuous Back Propagation Model which 
was subsequently simplified by Stuart Dreyfus in 1962. The significance of 
this discovery and its utility would not be realized until 1985 [9]. In 1970, 
Kunihiko Fukushima was working on designing a set of neural networks with 
multiple pooling and convolutional layers. In 1979, he produced an artificial 
neural network, named Neocognitron. This utilized a hierarchical, multi­
layered design which enabled the network to learn to identify visual patterns 
[9]. This was one of the first deep learning models.

2.3.1 Back Propagation

Rumelhart et al. in their 1986 paper, brought attention to the effective use 
of back-propagation in deep learning [23]. Back-propagation, with regards to 
deep learning, deals with the transmission of information, informing the neu­
ral network as to whether it has predicted accurately [24]. In deep learning, 
the neural network has a set of parameters, processes input data, and then 
makes a guess about that data using these parameters. This guess is then 
evaluated with a loss function. With back-propagation, the error determined 
by the loss function is propagated, in reverse, through the network, allowing 
it to alter the parameters and adjust based on the error [24]. This is akin to 
the process used by mortar teams. They make their initial aim based off a 
best guess, just as the neural network makes its initial guess. Once the shell 
lands, they see how far off their shot was, and adjust their aim accordingly. 
This parallels the back-propagation where the network adjusts its parame­
ters. The team then fires again and refines until the target is hit, just as 
the network adjusts until the error is minimized or eliminated. The use of 
back-propagation was key in the rise of deep learning in its effectiveness and 
widespread use.

Recently DL has been used to process the vast quantities of data being 
produced everyday. Companies like Amazon, Google, Microsoft, and Face­
book in particular have been using DL to process the data they harvest from 
users each day [25]. This data is processed by DL algorithms and the results 
are analyzed to extract data about users, trends, and economics [26]. As

13



more and more data is produced, the DL usages will increase as well.

2.4 Deep Reinforcement Learning

Deep Reinforcement Learning combines the approaches of both deep learn­
ing and reinforcement learning. This combination of Deep Learning and 
Reinforcement Learning has become increasingly popular [27][28]. Its effec­
tiveness has been demonstrated in multiple areas. One of the domains in 
which the use of Deep Reinforcement Learning has been utilized is in the 
area of robotics. Within robotics, the application of DRL with regards to 
exploration of areas by autonomous robot has shown promise. Digor et al. 
demonstrated effective strategies for exploration of areas using 3D laser scan- 
ning[29]. Niroui et al. showed the effectiveness of deep reinforcement trained 
rescue robots in unknown, cluttered environments [30]. Uslu et al. showed 
that frontier exploration via deep reinforcement learning is effective[31].

2.5 Ensemble Approach

One potential method for the improvement of performance is to utilize an 
ensemble of models to collaboratively generate actions. This approach is used 
mainly in classification models but can be applied to many areas. Ensemble 
methods such as random forests have been shown to produce superior results 
than single models [32]. Additionally, the use of models which differ tend to 
produce better results when used in an ensemble [33]. Hansen and Salamon 
(1990) showed that in order for these ensembles to be more accurate, the 
diversity and accuracy of the individual components is crucial [34]. Yang 
et al. presented a use of the ensemble approach in their paper on deep 
reinforcement learning for stock trading [35]. In this paper, they use a trio of 
actor-critic models (A2C, PPO, and DDPG) in an attempt to improve the 
rate of return in stock trading. This approach proves to outperform both 
the individual algorithms separately, as well as two separate baselines, when 
measured against the risk-adjusted return [35].

14



3 Objective

With the promise shown by ensemble methods, a question arises. Can en­
semble methods be effective when applied to robotic exploration? The goal of 
this paper is to answer this question. I do so by taking a trio of reinforcement 
learning models, and training them in a simulated robotic exploration envi­
ronment. These models take in the simulated sensor information as inputs, 
and output actions from a set of defined actions available. Along with train­
ing the models, I develop three different ensemble method implementations. 
These ensemble methods take in the actions proposed by these three trained 
models and choose an action to take within this simulated environment based 
of different factors. I then take the trained models, and evaluate the ensemble 
methods’ effectiveness by measuring the ensembles’ effectiveness on separate 
simulated maps. The performance of each of the three ensemble implementa­
tions is measured against each other, as well as the three trained component 
models. The goal of this being, to determine whether the ensemble methods 
provide an advantage over the individual models when performing robotic 
exploration. The contribution of this work is in providing evidence that en­
semble methods can produce improved performance over individual models 
when applied to robotic exploration. They can help mitigate the weaknesses 
which individual model may be prone to in certain environments. This knowl­
edge serves as a starting point for a more in depth exploration of ensemble 
applications in robotic exploration.

15



4 Implementation

In this section, I will go over the methods used in the research process, in­
cluding the environment used for the training and evaluation, the robot being 
simulated, the various technological components used, and the Reinforcement 
Learning model types implemented.

4.1 Environment

For the training and testing environment for this experiment it was not fea­
sible to conduct training and testing in a real world environment and thus I 
opted to work with a simulation. As far as requirements for the simulation, 
it was necessary that the computational requirements were relatively low, 
due to the limitations in the hardware available. A simulation environment 
which was lightweight and would allow for running high numbers of iterations 
in relatively short periods of time was ideal. In the end, the 2D simulation 
environment created by the Roblearn team [8] for their work on autonomous 
mobile robot navigation in an indoor environment was selected.

4.1.1 Robot

The robot used in the simulation is the Turtlebot 2 based version used by the 
Roblearn team. The sensors simulated are a Hokuyo UST-20LX and Intel 
Realsense D435. The Hokuyo UST-20LX is a compact 2D laser scanner with 
the following specifications [8]:

• range: 0.06-20m

• angle: 270°

• resolution: 0.25°

• precision: +/- 40 mm

• frame rate: 40 Hz

The robot is capable of recognizing sharp turns up to 135° due to its 
large opening angle of 270, which also allows it to perceive nearly all of its 
immediate surroundings.
The second sensor, the Intel Realsense D435 is an RGB-D sensor which has 
the following specifications [8]:

16



• RGB-D Sensor

• Vertical opening angle: 60°

• Horizontal opening angle: 90°

• Field of View: 86 x 57 x 94° (+/- 3°)

• Resolution: 1280 x 720

• Frame Rate: 90 fps

• Distance: 0.2 - 10 meters

Due to it’s horizontal opening angle, only one-third of the field of view 
of the laser scanner is covered. In contrast to the laser scanner, the RGB-D 
sensor’s vertical opening angle allows it to perform a 3D scan of the surround­
ings [8]. For the simulation, the number of available actions for the robot 
were reduced to seven, with each action being a combination of an angular 
and linear velocity. This constitutes the action space. The available actions 
are the following linear and angular value pairs:

• angular = 1.25, linear = 0.3

• angular = 1.0, linear = 0.4

• angular = 0.5, linear = 0.5

• angular = 0.0, linear = 0.6

• angular = -0.5, linear = 0.5

• angular = -1.0, linear = 0.4

• angular = -1.25, linear = 0.3

In order to generate the possible observations for the robot, the 1081 val­
ues of each of the prior four laser scans are combined into a vector, along 
with the compass value orientation of the robot toward the goal. For ori­
entation values, a vector with a size of 128 is mapped from the 0 to 360° 

orientation value of the robot. For this vector, all values are 0 except for the 
direction to the goal, which is given a value of 1. The laser input is given by 
distance values which are normalized between [0,1] with a maximum distance 
of 20 meters and provided in polar coordinates [8]. The robot has an update 
frequency of 2Hz.

17



4.1.2 Roblearn Simulation2D

The simulation environment itself provides several tangible benefits and is 
ideal as it is simple to implement and provides flexibility for environment 
design and expansion. The simulation is written in C++ and can handle 
eight floating-point operations simultaneously, allowing for the modeling of 
the laser beam intersections [8]. The environment is depicted by lines and 
circles which represent obstacles. The robot is shown as a circular shape 
with the laser scan coverage area emitted from it as the origin point. The 
orientation of the robot is indicated by the notch in the circle depicting the 
robot. The laser scan coverage area is depicted by green area and complies 
with the specifications of the UST-20LX on the plot which is rendered using 
gnuplot as seen in Figure 5. The gaps in laser coverage shown are due to 
obstacles blocking the sensor field of view. To simulate measurement error, 
Gaussian noise has been added to each laser beam. The goal point for the 
robot is indicated by a purple circle [8].

18



Figure 5: An example map in the Roblearn environment. The Robot is 
shown in Red, Laser Beams in Green, and the Target Point in Magenta [8].

The input vector for the neural network is a fused laser scan which is the 
point wise minimum of the 2D laser scan and the converted scan from the 
RGB-D sensor. This keeps the vector small, but it still contains 3D informa­
tion from the environment [8].

Environmental maps can be generated from actual data in real world 
scenarios, generated from the inkscape editor by hand, or directly generated 
with Python. Maps can be set to run with different configurations for the 
start location of the robot, the goal location, and their relationship to each 

19



other. The node selection is set by the Mode passed to the environment after 
it is created. The modes we used for our training and evaluation were: Pair 
All, All Random, and All Combination. Pair all uses sets of paired robot and 
goal locations. This mode is needed for some maps where the obstacles are 
designed for such pairings. All Combination picks the next start and goal 
locations from a list of each. All random picks randomly from these lists of 
start and goal locations. Roblearn provides guidelines for which modes to pair 
with the various maps included in their GitHub repository. Another option is 
to specify whether the environment should reset when the robot reaches the 
goal point, or generate a new goal. This also has guidelines specified in the 
Roblearn GitHub repository (https://github.com/RoblabWh/RobLearn).

4.1.3 Gym

In order to simplify the interaction between the environment and model, I 
decided to make use of some of the tools provided by OpenAI in an effort 
to reduce redundancy of development and utilize trusted, proven implemen­
tations. OpenAI is a non-profit AI research laboratory which has a stated 
goal of aiding in the promotion and development of AI so that humanity as 
a whole can benefit [36]. OpenAI provides several useful tools for AI, and 
particularly reinforcement learning, research. Out of the tools provided by 
OpenAI, I utilized their implementation of Gym, as well as implementations 
of some of their actor-critic models. Gym is a toolkit which is designed for 
the development and comparison in reinforcement learning.

One of the major impediments in reinforcement learning, as identified by 
OpenAI, was the need for better benchmarks, and a lack of standardization 
of environments. OpenAI created Gym to address these issues [37]. It has 
the benefits of being able to be used with a multitude of agents, as well 
as compatibility with computation libraries such as TensorFlow and Theano 
[37]. The Gym library consists of a collection of different environments for 
common reinforcement learning problems. The environments have a shared 
interface which allows the writing of general algorithms for navigation [37]. 
This means that, by implementing your own environment with the provided 
interface, custom environments can take advantage of the universality the 
gym interface provides and have a multitude of models interact with them 
interchangeably.

20

https://github.com/RoblabWh/RobLearn


Gym environments implement the step, reset, render, and close methods, 
as well as other optional methods. In order to get observations within the 
Gym environments, the step method is provided. This returns the follow­
ing: observation, reward, whether or not the end state has been reached, 
and diagnostic information. The reset method resets the environment and 
returns an initial observation. Render call the rendering component of the 
environment for visualization while the close method is self-evident [37].

4.1.4 Gym Environment

In order to use the simulation environment with the stable baselines models, 
the environment first had to be modified to match the OpenAI Gym frame­
work within which the models are designed to operate. In order to implement 
this shared interface it was necessary to modify the existing environment cre­
ated by the Roblearn team to inherit from the GymEnvironment class and 
implement the Gym interface. This entailed implementing the step, reset, 
render, and close methods, as well as specifying the action and observation 
spaces for the environment. The action space is defined as a Discrete Gym 
space with a size of seven. Discrete spaces are defined in Gym as: “A list 
of possible actions, where each timestep only one of the actions can be used 
[38]." This correlates to the seven available actions for the robot as it can 
only take one of these action at each step. The observation space is a Gym 
Box shape with a low value of zero, a high value of one and a shape of the 
combination of the 1081 laser scan values and the 128 orientation values. A 
Box shape is defined in Gym as: “A N-dimensional box that contains every 
point in the action space [38]."

4.1.5 Reward

The goal for the robot is to reach the goal in the environment and the reward 
for actions of the agent is based upon this goal. The reward function used 
is that defined by the Roblearn team [8] and as they describe is tied to the 
environment and is a reflection of how well the agent’s actions have translated 
toward an achievement of the goal. The initial reward is 0. The reward for 
the agent reaching the goal is 20. The penalty for a collision is -20. The 
intermediate reward, that for each step which does not result in a collision 
or reaching the goal, is based upon two components. These are:

21



1. A small reward is given if the distance from the robot to the goal is 
shorter than the last distance, a small positive reward is given, other­
wise it is given a small negative reward .[8]

2. The robot is given a small positive reward if it is oriented more towards 
the goal than in the prior state, and a correspondingly small negative 
reward if it is oriented further from the direction of the goal .[8]

Additionally, if the maximum allowed steps is reached, the agent is subject to 
the same penalty as a collision of -20. If an agent reaches the terminal state, 
or the maximum allowed steps has been reached, the agent is awarded the 
cumulative reward for each step including the final step reward/penalty. As 
Surmann et al. describe [8]: “The extended reward function leads to robust 
and fast learning results. While learning, the agents often reach circling 
states but are able to recover."

4.2 Models

Another of the initial decisions that needed to be made was what implemen­
tation to use for the Actor-Critic models. I decided to make use of a key 
tool provided by OpenAI, their implementation of reinforcement learning al­
gorithms, particularly actor-critic algorithms. These algorithms are proven 
and chosen because they are on the cutting edge in terms of reliability and 
sample efficiency among policy-learning algorithms [39]. There are third par­
ties which provide implementations of these OpenAI algorithms, and I elected 
to use the stable baselines implementations for my study.

4.2.1 Stable Baselines

Stable Baselines is a set of implementations of Reinforcement Learning algo­
rithms. These implementations are improvements upon the OpenAI Base­
lines which feature code cleanup as well as major structural refactoring. 
These include [38]:

• Unified algorithm structure

• Unified code style

• Documentation of classes and methods

22



• Additional code coverage and test

• Support for and implementation of additional algorithms

The Stable Baseline implementations were ideal as they would allow the 
use of the multiple models required for an ensemble implementation with 
a standardize interface. Additionally, they provide improved implementa­
tions which could be plugged into Gym environments with ease. Out of the 
many available Stable Baselines algorithm implementations, I selected the 
following.

4.2.2 Actor-Critic Algorithms

Actor-Critic algorithms consist of two networks (actor and critic) working in 
tandem to find a solution to a given problem. The actor portion is responsible 
for choosing actions at each step in the process, which the critic network 
gauges the quality or the Q-value of a given input state [40].

4.2.3 Value-Based vs Policy-Based Methods

The two main types of learning algorithms utilized in Reinforcement Learn­
ing are Value-Based and Policy-Based. Google DeepMind is a prominent 
implementation of a value-based Q-learning method [1]. Surman et al. make 
use of the policy-based GA3C model for their aforementioned robotic explo­
ration reinforcement learning implementation [8]. In value-based algorithms, 
actions are selected based on the predicted value of the input state or action. 
The higher the value, the better the action. These algorithms attempt to 
learn the state or state-action values and act by choosing the best possible 
action for the given state. Q Learning utilizes this algorithm type.

Policy based algorithms map input states to output actions based upon 
a policy they learn directly [40]. Policies in reinforcement learning pertain 
to the strategy agents employ when attempting to reach their goal. As op­
posed to value-based methods, agents using policy-based methods refer to 
their policy when choosing actions at each step.

There are advantages and disadvantages to the use of each of these meth­
ods. Because they have quicker convergence, policy-based methods are typi­
cally better for stochastic and continuous environments as opposed to Value-

23



based methods which tend to be more steady and sample efficient [41].

4.2.4 Model Selection

For my purposes, policy-based methods were the ideal choice as my goal was 
for the robot to learn an optimal policy which it could use for autonomous 
exploration. With this type of method chosen, the next step was to decide 
which specific models to use as part of the ensemble. Out of the many 
available Stable Baselines models, I selected the following three:

4.2.5 Advantage Actor-Critic

Advantage Actor-Critic (A2C) is a deterministic, synchronous variant of the 
Asynchronous Advantage Actor Critic (AC3) introduced by Minh et al. in 
their paper on asynchronous deep reinforcement learning methods [42]. A3C 
computes estimators of returns and advantage functions via fixed-length seg­
ments of experience in an architecture that shares layers between the policy 
and value function, and as the name implies, utilizes asynchronous updates. 
A2C was developed as a synchronous alternative to A3C by researchers [43]. 
These researchers determined that by waiting for each actor to complete its 
segment of experience and then performing an update, taking an average 
over all the actors, they were able to remove the asynchronous portion of 
the model. This has an advantage of more effectively utilizing GPUs. A2C 
combines the two reinforcement learning algorithm types, policy based and 
value based in order to gain the benefits of both while limiting the shortcom­
ings. A2C and A3C are some of the most popular DRL algorithms. For this 
paper, the stable baselines implementation of the OpenAI A2C model was 
selected for its ease of implementation and abundance of support.

4.2.6 Proximal Policy Optimization 2

For the second model in my ensemble I selected the stable baselines im­
plementation of the OpenAI PPO2 model. Proximal Policy Optimization 
(PPO) algorithms were introduced by Schulman et al [44] in their 2017 pa­
per. They proposed them as “a new family of policy gradient methods for 
reinforcement learning [44]." As opposed to standard policy gradient methods 
which perform a single gradient update once per sample, PPO uses epochs 
of mini batch updates, performed multiple times. In simpler terms, PPO

24



collects experiences interacting with the environment in small batches, then 
uses each batch to update its decision making policy. After the policy has 
been updated, the old batch of experiences is discarded and a new one is 
collected using the updated policy. Because of this policy update method, 
PPO has less variance in training, though this comes at the cost of bias. 
Another benefit of this is that PPO tends to ensure that the agent does not 
devolve into taking senseless actions [45]. PPO has some of the benefits of 
Trust Region Policy Optimization (TRPO), with the added benefit of be­
ing simpler to implement, more general, and have better sample complexity. 
According to Schulman et al. [44] TRPO “is similar to natural policy gradi­
ent methods and is effective for optimizing large nonlinear policies such as 
neural networks." The PPO2 model I use is OpenAI’s implementation of the 
PPO made for GPU. As opposed to PPO1 which used MPI, it makes use of 
vectorized environments and uses these for multiprocessing [38].

4.2.7 Actor Critic using Kronecker-factored Trust Region

For my final ensemble model, I selected Actor Critic using Kronecker-factored 
Trust Region (ACKTR). ACKTR was introduced by Wu et al. in their paper 
titled Scalable Trust-Region Method for Deep Reinforcement learning using 
Kronecker-factored approximation [46]. In the paper they outline their ac­
tor critic model which takes three distinct techniques and combines them. 
These techniques are: actor-critic methods, trust region policy optimization 
for more consistent improvement, and distributed Kronecker factorization to 
improve sample efficiency and scalability [47]. TRPO can suffer from scalabil­
ity issues, and because of this, it can be impractical for large deep networks. 
This is due to the need to use large batches for approximations which is 
computationally expensive. It has been shown to perform poorly on tasks 
requiring Recurrent Neural Networks (RNN) or Convolutional Neural Net­
works (CNN) [48]. ACKTR improves upon this by applying the Kronecker- 
factored approximation to both the actor and critic, as well as keeping a 
running average of the curvature information. As a result, ACKTR scale 
more effectively with larger deep network models and solves tasks which 
TRPO cannot handle. One of the drawbacks of ACKTR is that it is not as 
straightforward for shared parameter networks such as RNN or others [48]. 
For this paper, the stable baselines implementation of the OpenAI ACKTR 
model was utilized.

25



These three models were selected for several reasons. The first reason 
was that the models used needed to be able to operate in my environment. 
Since the Simulation2D environment is a Box type, this narrowed down the 
number of models. Out of the eligible models, A2C, PPO2, and ACKTR 
stood out as they were recommended by Stable Baselines for discrete action 
spaces, with multiprocessing [38].

4.3 Training

For the training process, there were several decisions that needed to be made 
for how to conduct the training process. Some of the key decision were:

• Map Selection

• Number of Parallel Environments

• Map Training Order

• Training Episodes

• Training Timesteps

4.3.1 Tools

During the training process, several tools were utilized which provided met­
rics and guided the selection of the model and training parameters. I made 
use of the Stable Baselines callback functions such as the EvalCallback. This 
callback is an EventCallback that is triggered when a new best model is 
found during the training process. During training, it conducts an evalua­
tion of the model at the interval specified by the user. It outputs the score for 
the model during the evaluation, and if the model has recorded a new high 
score, it saves the model to the directory specified by the user. This proved 
invaluable during the training process as it allowed me to automatically save 
the model during the training, and avoid having an over-fitted model at the 
end of the process. Additionally, I utilized the stable baselines integration 
offered with TensorBoard. TensorBoard is a visualization toolkit provided by 
TensorFlow. It allows you to visualize a variety of different metrics related 
to the training process for reinforcement learning models, including key his­
togram presentations of loss and accuracy measures [49]. These functions can 
be set up such that they are called periodically during the training process.

26



4.3.2 Vectorized Training Environments

One way to improve training with a single agent is to make use of vectorized 
training environments. With vectorized environments, multiple independent 
environments are stacked into a single environment. This allows for the 
training of a single agent on multiple environments per step, as opposed 
to a single environment. The actions, observations, rewards, and end state 
flags are all vectors with the same number of dimensions as the number 
of environments [38]. Vectorized training environments have the potential 
to improve the training process, especially for policy learning, due to the 
increased variety of experienced states. For my training, I elected to use a 
vectorized environment of 12 environments. This was the maximum number 
of environments my system could handle before showing a large performance 
drop-off.

4.3.3 Map Selection

When choosing which maps to use for the training process, there were several 
factors to consider. The Roblearn team included six maps in their repository. 
The first step was to divide these into a training and test set. I elected to 
go with an even split of three training and three evaluation maps. For a bal­
anced training set, a selection of maps with varying difficulty levels seemed 
prudent. Fortunately, the Roblearn team identified difficulty levels with re­
gards to the included maps.

Figure 6: Training Maps

Training Map Set (Figure 6)

• Room - Difficult

27



• Roblearn - Medium

• Four Rooms - Difficult

Figure 7: Evaluation Maps

Evaluation Map Set (Figure 7)

• Test - Medium

• Diff Forms - Difficult

• Square - Easy

4.3.4 Training Order

With the training and evaluation sets determined, the training order was 
another problem to consider. Initially, I performed training on single maps. 
Using a vectorized environment consisting of 12 of the same map, the model 
was trained until proficient on that map and then sequentially trained on 
the next map in the same fashion. This method proved sub-optimal, as the 
model tended to develop behaviors that were biased toward the original map 
and were slow to overcome these during further training on the following 
maps. I determined that it was more effective to use a vectorized environ­
ment consisting of four individual environments for each map, for a total of 
twelve environments within the vectorized environment. This allowed the 
models to learn a variety of behaviours adapted to more varying obstacles. 
A capture of the models being trained can be seen in Figure 8.

28



Figure 8: Visualization of Training on Twelve Maps Simultaneously

4.3.5 Episodes and Timesteps

When determining the number of episodes to run the training for each model, 
I used the TensorBoard metrics to identify points when the episode reward 
values, loss, and advantage were no longer improving. Through a repeated 
trial and error process where training order was changed and parameters 
were modified, I was able to determine the episode counts where improve­
ment in the models began to drop off. This point was different for each of 
the models and thus I elected to use a different number of episodes for each. 
For A2C I ran the training for 100,000 episodes each, on the twelve environ­
ments in the vectorized environment, for a total of 1,200,000 episodes. For 
PPO2, I ran the training for 200,000 episodes on each, for a total of 2,400,000 
episodes total. For ACKTR, I ran for a total of 1,000,000 episodes. The dif­
ference in episode counts is a result of the sample efficiency of the models. 
ACKTR is the most sample efficient of the three, followed by A2C. PPO2 
was the most sample inefficient and required the most training episodes to 
train effectively. For the optimal number of timesteps to run per episode, 
I chose to follow the Roblearn teams lead and use 1000 as the maximum 
allowable number. This was to ensure if the robot reached a loop state this

29



would not lead to excessively long episodes with no progress was being made.

I thus trained the model for the number of episodes specified above, on 
the Room, Roblab, and Four Rooms maps simultaneously, for an episode total 
of 3,000,000 episodes for ACKTR, 3,600,000 episodes for A2C, and 9,600,000 
episodes for PPO2.

4.4 Policy

For each of the three models in the ensemble method, I used the stable base­
lines Multi-layer Perceptron (Mlp) Policy model. Multi-layer Perceptrons are 
one of the most useful types of neural networks. The stable baselines Mlp 
Policy implements actor critic using two layers of size 64 [38].

4.4.1 Model Parameters

When determining the optimal model parameters, I began with the stable 
baselines default values as the starting point, then made modifications to 
these in order to try to improve the training results. This was largely a trial 
and error process where one of the parameters would be modified, then the 
training re-run, and the training results consulted to determine if improve­
ments had been made. TensorBoard was key here as it provided visualization 
for the various training results and allowed me to determine parameter mod­
ification effects.

4.4.2 Learning Rate

Learning rate played the most important role in improving the models’ be­
haviour. Learning rate, also refered to as alpha, determines the rate at which 
a model values new experiences versus old ones. It plays a key role because 
with too high a learning rate, the model will set its policy early on, become 
overly-optimized, and not update it over time. If the learning rate is too 
low, the model will accept too much from new experiences and may never 
converge to a useful policy. Fine tuning the learning rate for each model took 
a significant amount of time and is likely still an area where improvement 
could be made. During training, I found a learning rate which decreased over 
time was the most effective form.

30



4.4.3 Entropy Coefficient

Another key parameter is entropy. Entropy controls the random nature of 
the model’s decisions. Higher entropy is better in the beginning as we would 
like the model to explore more and try more things. Ideally, entropy should 
decrease over time, as we want the model to stabilize and develop an intel­
ligent policy. A balance in initial entropy, as well as the rate of decrease is 
important to ensure the model does not get too set based on early choices, 
and still tries new actions as time goes on. I made modification to the en­
tropy coefficient for the models in order to optimize the entropy values over 
the course of training for each of the models.

4.4.4 Final Values

For the A2C model, I used a gamma discount factor of 0.99, a value coefficient 
for the loss calculation of 0.25, an entropy coefficient for the loss calculation 
of 0.01, a maximum value for gradient clipping of 0.5, an alpha value (RM- 
SProp decay) of 0.99, an epsilon value of 1e-5, and a learning rate value of 
0.003. I kept the A2C model at a constant learning rate as this produced 
the best results. I used five as the number of steps in each environment to 
run before updating. These values were the result of a trial and error process 
outlined in the A2C training section 4.5.1.

For the PPO2 model, I used an alpha value of 0.99, an entropy coefficient 
value of 0.005 for the loss calculation, and used 1000 as the number of train­
ing mini batches per update and 4 for the number of epochs when optimizing 
the surrogate. I used a learning rate of 2.5e-4, a max gradient norm of 0.5, 
a lambda factor for trade-off of bias vs variance for Generalized Advantage 
Estimator of 0.95, and a clip range of 0.2. I again limited the steps to 1000.

Finally, for the ACKTR model I used an gamma discount factor of 0.99, 
an entropy coefficient for the loss calculation of 0.01, a value coefficient for 
the loss calculation of 0.25, a weight for the Fisher loss on the value function 
of 1.0, a learning rate of .25, 0.5 as the clipping value for the maximum gra­
dient, and a gradient clipping for Kullback-Leibler of 0.001. I used a linear 
scheduler for the learning rate updater. I limited the steps to 1000 for this 
as well. Training time for ACKTR took approximately 8 hours.

31



4.5 Training Results

When evaluating training, I looked at the TensorBoard metrics for the train­
ing session. In particular, I was interested in Episode Reward, Advantage, 
and Loss.

Episode reward was the primary metric used overall when determining 
improvement in the model during training. At the end of training, the goal 
was a model which scored close to the optimal score for the map, in the 
allotted number of timesteps. This varied depending on whether training 
on a map continued after a goal was reached or ended. Regardless, if no 
improvement in episode reward was shown over long periods of time, this 
was a good indicator that the training was no longer producing improved 
results. In some cases, lower rewards could occur for some time, followed 
by improvements. This made it difficult to know when to effectively end 
training, as ending before this secondary rise in improvement leads to lower 
model performance, but this was difficult to anticipate.

Advantage was another metric used when evaluating training effective­
ness. Advantage is a measure of the value of a certain action, given the 
specific state at the time. Mathematically, it is defined as A(s,a) = E[r(s,a) 
- r(s)] where r is reward and r(s,a) is the expected reward given state s and 
action a, and r(s) is the expected reward prior to an action being selected 
[50]. The advantage should grow overall with the training, though there may 
be dips during the process.

Loss, being a measure of the difference between the chosen action and 
the optimal, we would like to decrease over time. However, there are periods 
where increased loss are acceptable, as they lead to future improved results. 
This was the case in my training, as I observed loss increasing initially, level­
ing of and decreasing at times, but then resuming the increase until hitting 
a plateau. This is in part due to the increased complexity as the model per­
forms better and is able to achieve greater rewards.

The discount factor was the final metric I used to determine effectiveness. 
This determines how much the agent values current versus future rewards. 
Again there needs to be a balance here, otherwise the model will choose 
actions which lead to a short term reward and never explore options that 

32



may result in short term penalties, but pay off in the long term. In my case, 
too low of a discount factor could lead a model to never move away from the 
goal, since that results in a small negative reward. This would lead to it only 
traveling directly towards the goal which is not optimal in a large number of 
situations.

4.5.1 A2C Training

A2C training initially proved frustrating. The model was prone to devolving 
into spinning in circles, especially earlier on in the training process. In order 
to combat this, adjustment of the learning rate was needed. Patience was also 
required as the model could recover from these spinning episodes if properly 
configured, and given enough time. In order to achieve this, I trained the 
model for 10 million episodes to ensure that it had maximized its learning. 
Another difficulty encountered was configuring the number of steps to execute 
before performing an update. Initially I set this to 300, in line with what the 
RobLearn team used for their A3C model. However, this proved to reduce 
the model’s ability to adapt, and I ended up reducing the number of steps 
down to five. This improved performance greatly. Overall training for the 
model in the final configuration took approximately 6.5 hours. The final 
result was the most effective model of the three. The tensorboard results for 
the training can be seen in Figure 9. The entrop loss values and discounted 
rewards show the progress of the training, with the entropy loss decreasing 
over time paired with the discounted rewards increasing.

33



Figure 9: A2C Training Results

4.5.2 PPO2 Training

PPO2 proved the most difficult to effectively train. Like the A2C model, it 
was prone to falling into continual circles. However, it did not recover as well 
and this led to long training sessions with no improvement. I was unable to 
reach a point with the model where it had mastered the Four Rooms map. I 
was able to train it to the point where it successfully performed in the other 
two maps and I used a training length of ten million episodes for this as well, 
taking over ten hours to complete. The tensorboard results for the training 
can be seen in Figure 10. The difficulties training this model are evinced by 
the spikes in the entropy loss and loss values which were difficult to stabilize, 
as well as the spikes in discounted reward and value function loss.

34



Figure 10: PPO2 Training Results Showing Large Spikes in Advantage and 
Loss

4.5.3 ACKTR Training

ACKTR Training took the longest of the three models with some interesting 
quirks. When running the training, rewards would plateau, and even decrease 
in some cases, for long periods (one million plus episodes). Due to this, initial 
training was not as effective. Eventually I discovered that extended training 
would overcome these plateaus. The final training was performed over the 
course of seven million episodes. I selected this as the cutoff due to episode 
reward leveling off. The advantage and discounted rewards leveled off as 
well, along with the learning rate dropping to zero. Total training time for 
the model was 380 minutes. The tensorboard results for the training can 
be seen in Figure 11. The steady progression of the episode reward, as well 
as the increase and leveling of the advantage values show the progress of 
the training to a maximized point. Additionally, the steady decrease of the 
entropy loss is another positive indication of effective training.

35



Figure 11: ACKTR Training Results

4.6 Ensemble Method

The basic operation of the ensemble method used is illustrated in Figure 12.

36



Figure 12: Ensemble Method

At each step, the models are each presented with the current state. Each 
model then generates its recommended action. From here, the ensemble 
method logic selects one of the actions and uses it as the action to take. The 
environment is updated using this action and the process repeats.

As far as the ensemble logic is concerned, there were three different meth­
ods used.

4.6.1 Random Method

The first method used is a random selection method. In this method, a 
random action is picked from the actions generated by each of the three 
models. The random selection is done using the Python Random library 
Sample method:

37



def ensemble_strategy_random ( action , action2 , action3 ) : 
actions = ( action , action2 , action3)
chosen _ act ion = rand . sample ( actions , 1)

return chosen action

This random selection serves as a baseline for the ensemble methods to 
see if chance performs better than the following, more selective methods.

4.6.2 Vote Method

The second variation is a voting method. In this, the action selections of 
each model are compared. If any two or three models agree on an action to 
take, that action is selected. Otherwise, a random action is selected from the 
three again using the Python Random Sample method:

def ensemble_strategy_vote ( action , action2 , action3 ) :
i f a c t i o n 2 == a c t i o n 3 :

chosen_action = action2
e l i f act ion == act ion2 : 

chosen_action = action 
e l i f act ion == act ion3 : 

chosen_action = action 
else : # pick random action since no majority

actions = ( action , action2 , action3) 
chosen_action = rand . sample ( actions , 1)

return chosen _ action

For this method, I attempted to leverage the experience of multiple mod­
els. The theory being, if two models agree on an action, there is a greater 
likelihood that the action is a better one.

38



4.6.3 Probability Method

In the third variation, each model outputs a probability vector listing the 
probability for each of the seven action choices possible. These probability 
vectors are summed, and the action with the highest combined probability is 
selected. This method was chosen to benefit from the combined knowledge 
of each of the models while ideally mitigating a single model’s preference:

def ensemble_strategy_probability ( probVec1 , probVec2 , probVec3 ) : 
combined_probabilities = probVec 1 + probVec2 + probVec3

chosen _ act ion = np . argmax ( combined_probabilities [0] )

return chosen _ action

The thought behind this method is leverage the probability vectors in 
order to determine the action with the overall highest probability. This 
action should have the greatest likelihood of being the best choice.

4.7 Evaluation

In order to evaluate the ensemble approach I elected to run each of the three 
ensemble methods on each of the three evaluation maps. I also ran each of the 
three individual models on the three evaluation maps for comparison. For all 
of these, I ran them on each map for 100 episodes, keeping the timestep limit 
at 1000 steps to avoid lengthy loops. The same mode is used for determining 
robot start location and goal location on each map for each evaluation run. 
The start and goal for the Test map is set and does not change. For the 
Diff Forms and Square maps, we used the pair combination mode which 
uses a set order. This ensures that the same sequences are used for each 
evaluation to remove the possibility of variation due to different start and 
goal locations. The start and end locations for the Diff Forms map changed 
after each episode and were on a set rotating schedule. For the Square map, 
each episode continues until the robot has a collision, or the max number 
of timesteps is reached. Due to this, the better a model performs, the more 
goals it will encounter in each episode. However, the order of start and goal 
points is set for each episode to ensure overall parity. For each episode I 
track the score and add it to the total score for the model, at the end I take 
the sum of the model’s scores and generate the average for that map to use 

39



for map performance comparisons. I take the overall average of each model’s 
performance over all three maps as well. This average is used for overall 
performance comparison.

40



5 Results

The performance of the models was measured by their total score for the one 
hundred episodes on each evaluation map, as well as their total score average 
across the three evaluation maps. The results of the evaluation are presented 
in Table 1 showed that the ensemble method performed better on average 
than two of the three individual models.

Table 1: Evaluation Results

A2C PPO2 ACKTR Random Vote Probability
Diff Forms 404.13 241.68 309.45 363.57 376.15 359.25
Test 607.82 239.47 334.83 436.13 493.81 324.05
Square 628.91 77.73 588.35 533.30 600.58 635.26
Results from 100 episodes on three maps. Performance was measured by 

the sum of each model’s total score for each map.

On the Diff Forms map, all three ensemble methods outperformed ACKTR 
and PPO2 while falling short of A2C, with the Vote method scoring the 
highest. On the Test map, the Vote and Random ensemble methods outper­
formed ACKTR and PPO2, while the A2C model narrowly outperformed all 
models. The Probability ensemble fell just shy of the ACKTR but outper­
formed PPO2. On the Square map, PPO2 had a large fall off in performance, 
scoring well below all other models. The Probability ensemble outperformed 
all models for this map, while A2C performed the second best. The Vote 
ensemble outperformed the other two individual models, while the Random 
ensemble only outperformed PPO2.

One item of note in these results is that the poor performance of the PPO2 
model on the Square map did not lead to a corresponding degradation in the 
Ensemble models’ performances. One of the hoped benefits of an ensemble 
is the minimization of the weakness of the individual component models and 
it would appear to have worked in this instance.

41



Table 2: Overall Averages

A2C PPO2 ACKTR Random Vote Probability
Avg. Score 546.95 186.29 410.88 444.33 490.18 439.52

Average score for each model across the three maps

The total average for each model are presented in Table 2. This shows 
that the A2C ensemble method had the highest overall average score, out­
performing all three ensemble models, along with the two other individual 
models. The Vote ensemble method had the highest average for the ensem­
bles, outperforming ACKTR and PPO2 as well. Its average was lower than 
that of A2C by 10.38%. The Random ensemble was outperformed by A2C 
on average by 18.76%, while the Probability ensemble was outperformed by 
A2C on average by 24.44%. Vote, Random, and Probability outperformed 
ACKTR on average by 19.30%, 8.14%, and 6.97% respectively, and outper­
formed PPO2 on average by 163.12%, 138.51%, and 135.93% respectively.

The Vote method outperforming the Random method was anticipated, 
though one might have expected the probability method to produce better 
results. Since the random method randomly picks a choice out of the three 
presented actions, there was not an expectation that this might perform 
better than the individual models, but likely under perform compared to the 
other two ensembles. Because the voting method uses an intelligent approach 
where it selects an action if two or models agree, there is a greater likelihood 
that the action it selects is the optimal one. The probability ensemble we 
expected to perform better, since they are combining the probabilities gen­
erated by each model and there is a greater likelihood that the chosen action 
has a high probability of being optimal. However, it could have suffered as 
a result of possible bias on the part of the PPO2 model. Some refinement in 
the implementation of the probability method could lead to increased per­
formance, as it is taking the probabilities of all the possible actions, not just 
the recommended actions of each model.

42



6 Conclusion and Future Work

6.1 Conclusion

In this study, the goal was to determine whether an ensemble method ap­
proach to autonomous robot exploration would prove more effective than the 
use of a single model. The results show that although the ensemble approach 
does not always outperform every individual model, on average it outper­
formed the majority of the component models. This would indicate that an 
ensemble approach would be beneficial for use, especially in unknown envi­
ronments which may contain obstacles that would put an individual model 
at a disadvantage. The benefit of the ensemble method versus an individual 
model is that it has the ability to mitigate the individual model’s weakness 
and provide more balance. This leads to better average performance. I was 
able to demonstrate that the vote and random ensemble methods used here 
are able to outperform the individual component models most of the time.

The results also show that the implementation of the ensemble plays 
a large role in performance as well. This is evinced by the differences in 
the three ensemble implementations performance. The Probability ensemble 
performed the poorest out of the three, though it did outperform the three 
component models in two of the three maps and all three models in one of 
the maps. Overall, its average was well below that of the other two ensemble 
methods. The Vote model performed the best, indicating that using a con­
sensus of action choices provides more optimal results.

Another takeaway from the results is that model training, while key to 
the effective performance of the ensemble, is not a deal-breaker in terms of 
effectiveness. If one or more of the ensemble members is not as effectively 
trained, it will not necessarily render the ensemble ineffective. This was 
shown when the PPO2 model performed poorly on the Square map, but 
the ensembles all still outperformed the ACKTR model. However, the poor 
performance of the PPO2 model may have been the reason the ensembles’ 
results were below the A2C model’s results by a larger factor for this map. 
Effective training was by far the largest challenge experienced during the 
process. Refining the separate training processes was both time consuming 
and difficult. This could be considered a drawback when comparing the use 
of an ensemble versus a single model. It would be much simpler and faster to 

43



train a single model to proficiency, though the results may not be as good.

6.2 Future Work

One of the downsides of working only in a simulated environment is that 
things do not always translate to the actual performance of a real robot. The 
next step would be to implement the method on an actual robot instead of 
just in simulations and perform evaluations of its performance to determine 
the real impact of the ensemble. This was not feasible due to a number 
of factors during the time this was conducted but would definitely be the 
preferred next step in the process. Other future possibilities to improve 
upon the work here follow.

6.2.1 Ensemble Improvements

There is likely room for improvement for the implementations of the ensemble 
methods. One possible improvement would be to modify the voting method 
to use best performing model’s action in event of tie instead of making a ran­
dom selection from the three choices. To do this one could track the running 
average reward for each model’s chosen actions and then choose the action 
of the model with the highest average in the event of ties. Implementation of 
this would have to be done carefully as it could favor a single model unduly, 
especially early in the exploration process. The drawback of this being an un­
due bias in model choice if one model has been selected more initially. Also, 
immediate rewards are not necessary reflective of long term success which 
could be another drawback of choosing a model with better early scoring.

Another way to improve the ensemble would be to try it with different 
reinforcement learning models. There are several options for this. One way to 
do this would be to remove the poorest performing model and replace it with 
another model trained on the same environments. Another would be to train 
the models on separate environments to see if they balance out. A further 
option would be to increase the number of models within the ensemble, either 
adding new model types, increasing the number of each model type, or some 
combination thereof.

44



6.2.2 Training Improvements

Training models effectively is key to the process. The following are some pos­
sible training improvements. One future area of study would be to measure 
the impact of poorly trained component models on the overall performance 
of the ensemble. Substituting controlled models into the ensemble and mea­
suring the score differences could help determine how big of an impact this 
has, and may help to devise ways to mitigate the effects.

6.2.3 Hyperparameter Optimization

One of the most important parts of Reinforcement Learning is the proper 
configuration of the models. Even small changes in the hyperparameters 
used for training can have a large impact in the success or failure of the 
model to develop a maximal policy for the environment. There are some 
tools available which provide hyperparameter optimization. I discovered an 
integration of one of these tools, Optuna, but its integration with Stable 
Baselines did not exist at the time I was conducting my study. Recently, 
in Stable Baselines 3, they have introduced integration with this tool and it 
could prove invaluable in the improvement of individual and ensemble model 
performance.

6.2.4 Parallelization

Another possible improvement to the ensemble approach would be to make 
use of parallel agents when training the models. One of the major advantages 
of the Roblearn group’s approach was the ability to utilize parallel agents 
with GA3C. They used eight trainers, on thirty-two environments. One of 
the drawbacks of the Stable Baselines implementations is a lack of built in 
parallelization support. Going forward, building a library which incorpo­
rates the Stable Baselines models and allows for parallel agents in training 
would likely provide a significant gain in individual model, and ensemble 
performance.

6.2.5 Map Improvements

One further way to improve model training would be to create additional 
maps which provide training artifacts that would improve the models’ ability 
to make inferences about their environments and the obstacles therein. Maps 

45



which encourage the model to explore corners and not focus solely on the 
center portions of maps would be one possibility. This could help reduce the 
issues observed with the models where they struggled on maps such as the 
square, room, and four rooms.

6.2.6 Applications

In the future, one potential improvement would be to modify the ensemble 
training. In order to tackle more real world problems such as those tar­
geted in the SubT Challenge, an expansion of the focus of the model training 
to focus on mapping as much of the unexplored area as possible. A com­
bination of the current approach presented here, along with this focus on 
exploration, would likely result in a robot which would be better suited at 
the combination of exploration of unknown environments along with artifact 
identification. One such application is that proposed by Herdering et al. 
[51] in their paper which proposes using DRL to maximize coverage while 
searching and avoiding unknown obstacles. This would be key for search and 
rescue operations and other similar scenarios.

46



References

[1] AlphaGo: The story so far. [Online]. Available:  
(visited 

on 04/24/2021).

 https : / / deepmind .
com/research/case-studies/alphago-the- story- so-far 

[2] Go, Jack Good. [Online]. Available:  
(visited on 04/24/2021).

 http://www.chilton-computing.
org.uk/acl/literature/reports/p019.htm 

[3] K.-H. Yu, A. L. Beam, and I. S. Kohane, “Artificial intelligence in 
healthcare,” Nature Biomedical Engineering, vol. 2, no. 10, pp. 719­
731, Oct. 2018, issn: 2157-846X. doi: . 
[Online]. Available:  

.

 10.1038/s41551-018-0305-z
 https : / /www . nature . com/ articles / s41551 -

018-0305-z

[4] Quantitative Trading - An Introduction For Investors, Apr. 2018. [On­
line]. Available: ve- 

(visited on 04/24/2021).
 https://speedtrader.com/introdution-quantitati

trading/ 

[5] S. Panesar, Y. Cagle, D. Chander, J. Morey, J. Fernandez-Miranda, and 
M. Kliot, “Artificial Intelligence and the Future of Surgical Robotics,” 
Annals of Surgery, vol. 270, no. 2, pp. 223-226, Aug. 2019, issn: 0003­
4932. doi: . [Online]. Available: : 

 
.

 10.1097/SLA.0000000000003262  https
/ / journals . lww . com / annalsofsurgery / fulltext /2019/08000/
artificial_intelligence_and_the_future_of_surgical.7.aspx

[6] V. S. Bisen, How AI Can Help In Agriculture: Five Applications and 
Use Cases, Mar. 2021. [Online]. Available:  

ns- 
(visited on 04/24/2021).

 https : / / medium . com/
vsinghbisen/how-ai-can-help-in-agriculture-five-applicatio
and-use-cases-f09c3dc326c9 

[7] DARPA Subterranean (SubT) Challenge. [Online]. Available:  
(visited 

on 04/24/2021).

 https://
www .darpa .mil/program/darpa- subterranean- challenge 

[8] H. Surmann, C. Jestel, R. Marchel, F. Musberg, H. Elhadj, and M. Ar- 
dani, “ Deep Reinforcement learning for real autonomous mobile robot 
navigation in indoor environments,” arXiv:2005.13857 [cs], May 2020. 
[Online]. Available: (visited on 
02/18/2021).

 http: //arxiv.org/abs/2005.13857 

47

https://deepmind.com/research/case-studies/alphago-the-story-so-far
https://deepmind.com/research/case-studies/alphago-the-story-so-far
http://www.chilton-computing.org.uk/acl/literature/reports/p019.htm
http://www.chilton-computing.org.uk/acl/literature/reports/p019.htm
https://doi.org/10.1038/s41551-018-0305-z
https://www.nature.com/articles/s41551-018-0305-z
https://www.nature.com/articles/s41551-018-0305-z
https://speedtrader.com/introdution-quantitative-trading/
https://speedtrader.com/introdution-quantitative-trading/
https://doi.org/10.1097/SLA.0000000000003262
https://journals.lww.com/annalsofsurgery/fulltext/2019/08000/artificial_intelligence_and_the_future_of_surgical.7.aspx
https://journals.lww.com/annalsofsurgery/fulltext/2019/08000/artificial_intelligence_and_the_future_of_surgical.7.aspx
https://journals.lww.com/annalsofsurgery/fulltext/2019/08000/artificial_intelligence_and_the_future_of_surgical.7.aspx
https://medium.com/vsinghbisen/how-ai-can-help-in-agriculture-five-applications-and-use-cases-f09c3dc326c9
https://medium.com/vsinghbisen/how-ai-can-help-in-agriculture-five-applications-and-use-cases-f09c3dc326c9
https://medium.com/vsinghbisen/how-ai-can-help-in-agriculture-five-applications-and-use-cases-f09c3dc326c9
https://www.darpa.mil/program/darpa-subterranean-challenge
https://www.darpa.mil/program/darpa-subterranean-challenge
http://arxiv.org/abs/2005.13857


[9] K. D. Foote, A Brief History of Deep Learning, Feb. 2017. [Online]. 
Available:  

(visited on 02/14/2021).
 https : //www . dataversity . net /brief - history - deep -

learning/ 

[10] K. P. Murphy, Machine Learning: A Probabilistic Perspective. MIT 
Press, Sep. 2012, isbn: 9780262304320.

[11] K. D. Foote, A Brief History of Machine Learning, Mar. 2019. [Online]. 
Available:  

(visited on 02/12/2021).
 https : //www . dataversity . net/a-brief - history - of -

machine-learning/ 

[12] A. L. Samuel, “Some Studies in Machine Learning Using the Game of 
Checkers,” IBM Journal of Research and Development, vol. 3, no. 3, 
pp. 210-229, Jul. 1959, issn: 0018-8646. dOi: . 10.1147/rd.33.0210

[13] J. Dy and C. Brodley, “Feature Selection for Unsupervised Learning,” 
Journal of Machine Learning Research, vol. 5, pp. 845-889, Aug. 2004.

[14] M. Lee, 1.5 Summary. [Online]. Available:  
(visited on 02/15/2021).
 http://incompleteideas.

net/book/first/ebook/node11.html 

[15] B. Osinski and K. Budek, What is reinforcement learning? the complete 
guide, Jul. 2018. [Online]. Available:  

(visited on 
02/28/2021).

 https : //deepsense . ai / what -
is - reinforcement - learning - the - complete - guide/ 

[16] R. S. Sutton and A. G. Barto, Reinforcement Learning, second edition: 
An Introduction. MIT Press, Nov. 2018, isbn: 9780262352703.

[17] X. Han, A Mathematical Introduction to Reinforcement Learning, 2018. 
[Online]. Available:  

 
(visited on 04/25/2021).

 /paper / A - Mathematical - Introduction - to -
Reinforcement-Han/19fddc8990f1bfee8f64ffe5de5b9c4d41c68ba7

[18] Motorcycle Cone Course Layout (Page 1) - . [Online]. 
Available:  
(visited on 04/25/2021).

Line.17QQ.com
 https : / / line . 17qq . com / articles / cuweuwqqx . html

[19] M. Lee, 3.1 The Agent-Environment Interface. [Online]. Available: : 
(visited 

on 04/25/2021).

 http
//incompleteideas . net/book/first/ebook/node28 . html 

48

https://www.dataversity.net/brief-history-deep-learning/
https://www.dataversity.net/brief-history-deep-learning/
https://www.dataversity.net/a-brief-history-of-machine-learning/
https://www.dataversity.net/a-brief-history-of-machine-learning/
https://doi.org/10.1147/rd.33.0210
http://incompleteideas.net/book/first/ebook/node11.html
http://incompleteideas.net/book/first/ebook/node11.html
https://deepsense.ai/what-is-reinforcement-learning-the-complete-guide/
https://deepsense.ai/what-is-reinforcement-learning-the-complete-guide/
file:///paper/A-Mathematical-Introduction-to-Reinforcement-Han/19fddc8990f1bfee8f64ffe5de5b9c4d41c68ba7
file:///paper/A-Mathematical-Introduction-to-Reinforcement-Han/19fddc8990f1bfee8f64ffe5de5b9c4d41c68ba7
Line.17QQ.com
https://line.17qq.com/articles/cuweuwqqx.html
http://incompleteideas.net/book/first/ebook/node28.html
http://incompleteideas.net/book/first/ebook/node28.html


[20] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521, 
no. 7553, pp. 436-444, May 2015, issn: 1476-4687. dOi:  

 [Online]. Available: / 
(visited on 04/25/2021).

 10. 1038/
nature14539.  https://www.nature.com/articles
nature14539 

[21] L. Deng and D. Yu, “Deep Learning: Methods and Applications,” Foun­
dations and Trends in Signal Processing, vol. 7, no. 3-4, pp. 197­
387, Jun. 2014, issn: 1932-8346. doi:  [On­
line]. Available: (visited 
on 04/07/2021).

 10 . 1561 / 2000000039.
 https : / / doi . org / 10 . 1561 / 2000000039 

[22] L. P. Kaelbling, M. L. Littman, and A. W. Moore, “Reinforcement 
Learning: A Survey,” arXiv:cs/9605103, Apr. 1996. [Online]. Available: 

(visited on 04/07/2021).http://arxiv.org/abs/cs/9605103 

[23] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning rep­
resentations by back-propagating errors,” Nature, vol. 323, no. 6088, 
pp. 533-536, Oct. 1986, issn: 1476-4687. doi: . 
[Online]. Available:

 10 . 1038 / 323533a0
 https://www.nature.com/articles/323533a0.

[24] A Beginner’s Guide to Backpropagation in Neural Networks. [Online]. 
Available: (visited on 
04/26/2021).

 http://wiki.pathmind.com/backpropagation 

[25] J. Gauci, E. Conti, Y. Liang, K. Virochsiri, Y. He, Z. Kaden, V. 
Narayanan, X. Ye, Z. Chen, and S. Fujimoto, “Horizon: Facebook’s 
Open Source Applied Reinforcement Learning Platform,” arXiv:1811.00260 
[cs, stat], Sep. 2019, arXiv: 1811.00260. [Online]. Available:  

(visited on 05/13/2021).
 http : //

arxiv.org/abs/1811.00260 

[26] M. M. Najafabadi, F. Villanustre, T. M. Khoshgoftaar, N. Seliya, R. 
Wald, and E. Muharemagic, “ Deep learning applications and challenges 
in big data analytics,” Journal of Big Data, vol. 2, no. 1, p. 1, Feb. 
2015, issn: 2196-1115. doi: . [Online]. 
Available: (visited 
on 05/13/2021).

 10.1186/s40537-014-0007-7
 https://doi.org/10.1186/s40537- 014- 0007-7 

[27] K. Arulkumaran, M. P. Deisenroth, M. Brundage, and A. A. Bharath, 
“Deep Reinforcement Learning: A Brief Survey,” IEEE Signal Process­
ing Magazine, vol. 34, no. 6, pp. 26-38, Nov. 2017, issn: 1558-0792. 
doi: . 10.1109/MSP.2017.2743240

49

https://doi.org/10.1038/nature14539
https://doi.org/10.1038/nature14539
https://www.nature.com/articles/nature14539
https://www.nature.com/articles/nature14539
https://doi.org/10.1561/2000000039
https://doi.org/10.1561/2000000039
http://arxiv.org/abs/cs/9605103
https://doi.org/10.1038/323533a0
https://www.nature.com/articles/323533a0
http://wiki.pathmind.com/backpropagation
http://arxiv.org/abs/1811.00260
http://arxiv.org/abs/1811.00260
https://doi.org/10.1186/s40537-014-0007-7
https://doi.org/10.1186/s40537-014-0007-7
https://doi.org/10.1109/MSP.2017.2743240


[28] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. 
Wierstra, and M. Riedmiller, “Playing Atari with Deep Reinforcement 
Learning,” arXiv:1312.5602 [cs], Dec. 2013. [Online]. Available:  

(visited on 04/07/2021).
 http:

//arxiv.org/abs/1312.5602 
[29] E. Digor, A. Birk, and A. Nuchter, “Exploration Strategies for a Robot 

with a Continously Rotating 3D Scanner,” Lecture Notes in Computer 
Science, N. Ando, S. Balakirsky, T. Hemker, M. Reggiani, and O. von 
Stryk, Eds., pp. 374-386, 2010. dOi:  

.
 10.1007/978-3-642-17319-

6_35

[30] F. Niroui, K. Zhang, Z. Kashino, and G. Nejat, “ Deep Reinforcement 
Learning Robot for Search and Rescue Applications: Exploration in 
Unknown Cluttered Environments,” IEEE Robotics and Automation 
Letters, vol. 4, no. 2, pp. 610-617, Apr. 2019, issn: 2377-3766. doi: 

.10.1109/LRA.2019.2891991

[31] E. Uslu, F. Qakmak, M. Balcilar, M. F. Amasyali, and S. Yavuz, 
“Frontier-based autonomous exploration algorithm implementation,” in 
2015 23nd Signal Processing and Communications Applications Con­
ference (SIU), May 2015, pp. 1313-1316. doi:  

.
 10 .1109/SIU .2015.

7130081
[32] B. Ghimire, J. Rogan, and J. Miller, “ Contextual land-cover classi­

fication: Incorporating spatial dependence in land-cover classification 
models using random forests and the Getis statistic,” Remote Sens­
ing Letters, vol. 1, no. 1, pp. 45-54, Mar. 2010, issn: 2150-704X. doi: 

. [Online]. Available:  

.
10.1080/01431160903252327  https://doi.org/
10.1080/01431160903252327

[33] T. G. Dietterich, “Ensemble Methods in Machine Learning,” Lecture 
Notes in Computer Science, pp. 1-15, 2000. doi:  

.
 10 . 1007/3- 540-

45014-9_1

[34] L. Hansen and P. Salamon, “Neural network ensembles,” IEEE Trans­
actions on Pattern Analysis and Machine Intelligence, vol. 12, no. 10, 
pp. 993-1001, Oct. 1990, issn: 1939-3539. doi: . 10.1109/34.58871

[35] H. Yang, X.-Y. Liu, S. Zhong, and A. Walid, “ Deep Reinforcement 
Learning for Automated Stock Trading: An Ensemble Strategy,” Social 
Science Research Network, Rochester, NY, SSRN Scholarly Paper ID 
3690996, Sep. 2020. [Online]. Available:  

(visited on 02/24/2021).
 https: //papers. ssrn.com/

abstract=3690996 

50

http://arxiv.org/abs/1312.5602
http://arxiv.org/abs/1312.5602
https://doi.org/10.1007/978-3-642-17319-6_35
https://doi.org/10.1007/978-3-642-17319-6_35
https://doi.org/10.1109/LRA.2019.2891991
https://doi.org/10.1109/SIU.2015.7130081
https://doi.org/10.1109/SIU.2015.7130081
https://doi.org/10.1080/01431160903252327
https://doi.org/10.1080/01431160903252327
https://doi.org/10.1080/01431160903252327
https://doi.org/10.1007/3-540-45014-9_1
https://doi.org/10.1007/3-540-45014-9_1
https://doi.org/10.1109/34.58871
https://papers.ssrn.com/abstract=3690996
https://papers.ssrn.com/abstract=3690996


[36] OpenAI Charter. [Online]. Available:  
(visited on 04/30/2021).

 https://openai.com/charter/

[37] OpenAI, Gym: A toolkit for developing and comparing reinforcement 
learning algorithms. [Online]. Available:  
(visited on 04/30/2021).

 https : / / gym . openai . com

[38] A. Hill, A. Raffin, M. Ernestus, A. Gleave, A. Kanervisto, R. Traore, 
P. Dhariwal, C. Hesse, O. Klimov, A. Nichol, M. Plappert, A. Radford, 
J. Schulman, S. Sidor, and Y. Wu, Stable baselines,  

, 2018.
 https://github.

com/hill-a/stable-baselines

[39] Algorithms — Spinning Up documentation. [Online]. Available:  
 

(visited on 05/01/2021).

 https:
/ / spinningup . openai . com/ en / latest / user / algorithms . html

[40] M. Wang, Advantage Actor Critic Tutorial: minA2C, Jan. 2021. [On­
line]. Available:  

(visited on 04/17/2021).
 https : / / towardsdatascience . com / advantage -

actor-critic-tutorial-mina2c-7a3249962fc8 

[41] S. Karagiannakos, The idea behind Actor-Critics and how A2C and 
A3C improve them, Nov. 2018. [Online]. Available: r. 

(visited on 04/17/2021).
 https://theaisumme

com/Actor_critics/ 

[42] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley, D. 
Silver, and K. Kavukcuoglu, “ Asynchronous Methods for Deep Rein­
forcement Learning,” in International Conference on Machine Learn­
ing, PMLR, Jun. 2016, pp. 1928-1937. [Online]. Available:  

(visited on 02/18/2021).
 http://

proceedings.mlr.press/v48/mniha16.html 

[43] J. X. Wang, Z. Kurth-Nelson, D. Tirumala, H. Soyer, J. Z. Leibo, R. 
Munos, C. Blundell, D. Kumaran, and M. Botvinick, “Learning to rein­
forcement learn,” arXiv:1611.05763 [cs, stat], Jan. 2017. [Online]. Avail­
able: (visited on 04/16/2021). http://arxiv.org/abs/1611.05763 

[44] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, 
“Proximal Policy Optimization Algorithms,” arXiv:1707.06347 [cs], Aug. 
2017. [Online]. Available: (vis­
ited on 02/24/2021).

 http : //arxiv . org/abs/ 1707 . 06347 

[45] C. Trivedi, Proximal Policy Optimization Tutorial (Part 1: Actor-Critic 
Method), Jun. 2020. [Online]. Available: . 

 
(visited on 04/17/2021).

 https://towardsdatascience
com / proximal - policy - optimization - tutorial - part - 1 - actor -
critic-method-d53f9afffbf6 

51

https://openai.com/charter/
https://gym.openai.com
https://github.com/hill-a/stable-baselines
https://github.com/hill-a/stable-baselines
https://spinningup.openai.com/en/latest/user/algorithms.html
https://spinningup.openai.com/en/latest/user/algorithms.html
https://towardsdatascience.com/advantage-actor-critic-tutorial-mina2c-7a3249962fc8
https://towardsdatascience.com/advantage-actor-critic-tutorial-mina2c-7a3249962fc8
https://theaisummer.com/Actor_critics/
https://theaisummer.com/Actor_critics/
http://proceedings.mlr.press/v48/mniha16.html
http://proceedings.mlr.press/v48/mniha16.html
http://arxiv.org/abs/1611.05763
http://arxiv.org/abs/1707.06347
https://towardsdatascience.com/proximal-policy-optimization-tutorial-part-1-actor-critic-method-d53f9afffbf6
https://towardsdatascience.com/proximal-policy-optimization-tutorial-part-1-actor-critic-method-d53f9afffbf6
https://towardsdatascience.com/proximal-policy-optimization-tutorial-part-1-actor-critic-method-d53f9afffbf6


[46] Y. Wu, E. Mansimov, S. Liao, R. Grosse, and J. Ba, “ Scalable trust­
region method for deep reinforcement learning using Kronecker-factored 
approximation,” arXiv:1708.05144 [cs], Aug. 2017. [Online]. Available: 

(visited on 04/15/2021).http://arxiv.org/abs/1708.05144 

[47] Openai baselines: ACKTR and A2C, Aug. 2017. [Online]. Available: 
(visited on 

04/16/2021).
https : / / openai . com / blog / baselines - acktr - a2c/ 

[48] J. Hui, RL — Actor-Critic using Kronecker-Factored Trust Region 
(ACKTR) Explained, Sep. 2018. [Online]. Available: - 

 
(visited on 04/18/2021).

 https://jonathan
hui . medium .com/rl- actor- critic - using - kronecker- factored-
trust-region-acktr-explained-670777ec65ce 

[49] TensorBoard. [Online]. Available:  
(visited on 05/08/2021).

 https : / / www . tensorflow . org /
tensorboard 

[50] S. Zychlinski, The Complete Reinforcement Learning Dictionary, Nov. 
2019. [Online]. Available:  

 
(visited on 05/09/2021).

 https : / / towardsdatascience . com / the -
complete - reinforcement - learning - dictionary - e16230b7d24e

[51] A. Herdering, H. Quintero, S. Centeno, M. Beylik, and J. Isaacs, “Deep 
Reinforcement Learning for Autonomous Search,” in Proceedings of 
the 2021 Computer Science Conference for CSU Undergraduates, Mar. 
2021.

52

http://arxiv.org/abs/1708.05144
https://openai.com/blog/baselines-acktr-a2c/
https://jonathan-hui.medium.com/rl-actor-critic-using-kronecker-factored-trust-region-acktr-explained-670777ec65ce
https://jonathan-hui.medium.com/rl-actor-critic-using-kronecker-factored-trust-region-acktr-explained-670777ec65ce
https://jonathan-hui.medium.com/rl-actor-critic-using-kronecker-factored-trust-region-acktr-explained-670777ec65ce
https://www.tensorflow.org/tensorboard
https://www.tensorflow.org/tensorboard
https://towardsdatascience.com/the-complete-reinforcement-learning-dictionary-e16230b7d24e
https://towardsdatascience.com/the-complete-reinforcement-learning-dictionary-e16230b7d24e

