
Deep Reinforcement Learning for Autonomous Search
2021-03-06

Andrew T. Herdering, Hugo F. Quintero, Sara E. Centeno, Mishell L. Beylik, Jason T. 
Isaacs

California State University Channel Islands

This document is made available through ScholarWorks, the shared institutional 
repository of the California State University System. Visit 
https://scholarworks.calstate.edu/ for more openly available scholarship from the CSU.

Repository Citation
Beylik, M.L., Centeno, S. E., Herdering, A.T., Isaacs, J.T., & Quintero, H.F. (2021, 
March 3). Deep reinforcement learning for autonomous search [Conference session]. 
2021 Computer Science Conference for CSU Undergraduates, Virtual. https://cscsu- 
conference.github.io/index.html

https://scholarworks.calstate.edu/
https://cscsu-conference.github.io/index.html
https://cscsu-conference.github.io/index.html


Deep Reinforcement Learning for Autonomous Search

Andrew T. Herdering, Hugo F. Quintero, Sara E. Centeno, Mishell L. Beylik, Jason T. Isaacs

California State University Channel Islands, Camarillo, USA

Abstract

We propose a technique for autonomous exploration and 
search of unknown environments with applications to ur
ban search and rescue. By utilizing a deep reinforcement 
learning approach we maximize the search coverage while 
avoiding unknown obstacles. Allowing autonomous plat
forms to rapidly search and provide feedback to rescue 
teams has the potential to aid both the victim and rescue 
personnel. Through a simulation study, we find that this 
approach searches significantly more area over time than 
a conventional map-based frontier exploration.

1. Introduction

Mobile robotics has become a major point of interest, 
particularly in search and rescue applications. Robotic 
agents can enter areas inaccessible or too hazardous for hu
mans and gather data on an environment being explored. 
They can also find specific objects, points of inspection, 
and potential survivors. For such operations to be effective, 
the robot agents must be able to navigate autonomously, 
therefore we propose to use reinforcement learning for 
this application. The main problem we address is the uti
lization of Deep Reinforcement Learning (DRL) to au
tonomously navigate real-world environments, specifically 
subterranean (e.g. mine tunnels, natural caves, or urban 
underground structures).

The Defense Advanced Research Projects Agency 
(DARPA) Subterranean (SubT) Challenge is a multi-stage 
robotics competition designed to stimulate research and 
innovations in the areas of mapping, navigation, and 
search in the complex underground environments de
scribed above. The objective of the competition is to ex
plore an unknown environment in search of artifacts rep
resenting survivors and other items associated with human 
presence. Points are rewarded for correctly identifying ar
tifacts and accurately reporting their position [1].

Tai et al. establish a method of Reinforcement Learn
ing (RL) for mapless navigation in complex environments 
by utilizing asynchronous deep deterministic policy gradi
ents (ADDPG) to plan the motion of mobile robots [2]. 
This method is intended to be a low-cost tool for in

door robots in smaller environments. Larger environments 
would require a map of the environment intended to be 
explored. Babaeizadeh et al. make improvements to the 
Asynchronous Advantage Actor Critic (A3C) used in RL 
by creating a hybrid architecture placing more emphasis 
on the Graphics Processing Unit (GPU) for computations, 
freeing room for the Central Processing Unit (CPU) to run 
other tasks during training [3]. The final product, GA3C, 
makes faster progress in learning as opposed to the original 
A3C. The authors used GA3C to do RL training for video 
games instead of real-world environments.

Zhang et al. propose a method that utilizes external 
memory to allow the Neural Network (NN) layer to com
pute the pose and map simultaneously with continuous 
control exploration commands, allowing it to map, local
ize, and make navigation decisions in a single unit [4]. 
This provides accurate frontier exploration within the map 
which the external memory has created. Tai et al. [5] pro
vide a sparse 10 element LiDAR input and relative tar
get location as input to DRL for continuous control au
tonomous navigation, allowing for more effective and sta
ble path planning than the move base method [6]. This pro
vides a significantly less computationally expensive point- 
to-point navigation system without the use of a world map. 
Everett et al. use DRL to allow for path planning with 
continuous control to efficiently navigate through dynamic 
obstacles such as crowds of people [7]. They utilize Long 
Short Term Memory as a fixed-size input to a NN to inter
nally map the static elements of the environment and track 
the dynamic elements effectively. Lillicrap et al. provide a 
general framework for taking in arbitrary input such as Li
DAR or a camera and using it to control an arbitrary drive 
train through continuous control, such as Ackermann steer, 
skid steer, seven DoF arm, and many more with a finite ac
tion space [8]. They use Q-Learning to efficiently utilize 
an unknown control system in a simulated environment.

For our training environment, we make use of RobLearn 
developed by Surmann et al. [9], which conducts RL train
ing more quickly than other simulators running in con
junction with ROS. The Q-step algorithm used in their RL 
training stems from the RL asynchronous parallel training 
algorithms developed by Mnih et al. [10] as an alterna
tive to the costlier deep learning method experience replay 



memory. This parallel training frees resources for the CPU 
to learn more quickly and maintain control in a continuous 
exploration task. The RobLearn simulator was successful, 
but the primary focus of Surmann et al. [9] was on reach
ing a desired waypoint in an unknown environment and did 
not extend into exploring and searching the area.

Niroui et al. present a Deep Reinforcement Learning 
approach to Urban Search and Rescue (USAR) [11]. The 
sensor inputs to the system are a 2D Lidar and Odometry. 
These sensors are used to generate a 2D Occupancy Grid 
Map using the gmapping library for ROS [12]. The 2D oc
cupancy map and odometry information is then combined 
with potential frontier points to form the inputs to a Deep 
RL A3C network. The output of this network is a selection 
of the best frontier point to visit next. They then utilize the 
ROS move-base package to navigate the robot to the fron
tier point [6]. The information gain used in their objective 
function is determined by the number of new open or occu
pied cells in the occupancy grid map. We build off this idea 
in the proposed approach to link cells searched by a camera 
to the information gain instead. The results presented in 
[11] show that the DRL approach to be slightly better than 
a deterministic approach where the objective function was 
a simple convex combination of information gain and dis
tance. Motivated by this performance we investigate this 
approach for the autonomous search problem.

The main contribution of this paper is a preliminary in
vestigation of using deep reinforcement learning for the 
application of autonomous exploration and search. First, 
we extend the work of [11] to optimize for searching as op
posed to mapping an unknown area. Initial simulation tests 
with the simulator used in the DARPA SubT Challenge 
demonstrate an improvement in area searched as a function 
of time. Second, we build upon the work of Surmann et al. 
by expanding RobLearn’s use beyond waypoint navigation 
and into search applications [9]. We modify the simulator 
to train in realistic underground environments found in the 
SubT Challenge. Preliminary simulation tests performed 
in the RobLearn simulator demonstrate the potential ef
fectiveness of using Deep reinforcement learning for this 
application.

The remainder of this paper is organized as follows. In 
Section 2, we describe the problem of Autonomous Ex
ploration and Search, and Section 3 presents our proposed 
solutions to the problem. The methods used in our simu
lation study are explained in Section 4. Next, the results 
of the simulation study are discussed in Section 5. Finally, 
the conclusion and future work are covered in Section 6.

2. Autonomous Exploration and Search

Performing search and rescue operations in an unknown 
environment where natural or other disasters have occurred 
is dangerous and taxing for even the most skilled human

Figure 1: A block diagram that describes the input/output 
relationship of the autonomous exploration and search 
problem.

search and rescue teams. Autonomous platforms equipped 
with LiDAR and cameras can be used to search and pro
vide feedback to rescue personnel. The block diagram in 
figure 1 describes the typical inputs and outputs for the au
tonomous exploration and search problem that we address 
in this work. An effective solution to this problem should 
use the LiDAR and camera readings to guide the robot in 
order to maximize the area searched within a limited time. 
Given the urgency of emergency situations, a rapid and ef
ficient search of the area is highly valued as it has the po
tential to save lives.

3. Navigation Algorithm

In this section, we describe an extension of the work 
of Niroui et al. [11] to optimize for searching unknown 
areas rather than exploration. We refer to this approach 
as Camera Frontier Exploration. Later in this section, we 
discuss a second approach that builds upon the work of 
Surmann et al. [9] by expanding RobLearn’s use beyond 
waypoint navigation and into search applications. We refer 
to this approach as Deep Reinforcement Learning Search.

3.1. Camera Frontier Exploration

We propose a new camera view frontier exploration al
gorithm that was developed and tested in ROS. The open
source package LIO-SAM [13] was used for Simultane
ous Localization and Mapping (SLAM), Move_Base [6] 
for navigating to points from the frontier exploration algo
rithm, a custom node was developed for the conversion of 
a 3D point cloud map from LIO-SAM to a 2D occupancy 
grid with dimensions of 300 x 300 meters and 0.5 m cells 
for the cost map for Move_Base using the Z-axis of points 
in the map to judge their cost, and finally, a ROS adapted 
variation of the class to record what the camera has seen 
generating the same size and resolution for the output grid 
as the cost map. The algorithms were given the pose from 
SLAM, the 2D cost map of the world, and the grid from 
the camera view. The proposed algorithm then generates a



Figure 2: Architecture of the Actor Critic DRL network 
modified from [9] to include a camera input.

list of candidate waypoints based on open cells in the 2D 
occupancy grip that are on the boundary of searched cells 
in the camera view map. These candidate waypoints are 
then evaluated to determine the utility of visiting each of 
these cells. This utility is determined by the number of 
unsearched cells within a 5 m radius of the candidate cell. 
The cost of each candidate waypoint is evaluated based on 
the estimated distance from the current pose of the robot 
to the candidate cell as determined by an A* path planning 
algorithm. Then utility, u, and cost, d, are combined by 
a convex combination to form the optimization function, 
fopt, using a weighting factor a.

The waypoint resulting in the minimum value of fopt is 
then chosen as the optimal waypoint to visit next.

3.2. Deep Reinforcement Learning Search

In addition to the Camera Frontier Exploration ap
proach, we present a second approach that modifies the RL 
algorithm from [9] to include a search capacity. The objec
tive of the GA3C network from [9] seeks to navigate to a 
desired goal location using the following reward function,

where ^ is a small constant reward factor given in accor
dance to the change in the robot’s distance to the goal, D, 
over the current iteration, and 6 is a small constant reward 
factor given according to the robot’s change in orientation, 
O, relative to the goal heading.

Figure 2 shows the architecture of the DRL network 
which we modified from [9] for the search objective by 
including a class to record the area searched, A, using the 
horizontal field of view and range of the camera, logging 
the information in a ROS-like occupancy grid. The con
tents of this grid are used to compute the reward function 

for the DRL Search algorithm as differential square me
ters (^AA) by counting the number of searched cells in the 
grid over one iteration, At, converting those to square me
ters using the resolution of the grid. This modified reward 
function is,

In the case of a collision, the reward function fo produces 
a large negative penalty, similar to (2). The collision pa
rameter is a Boolean representing whether there has been 
a collision with an obstacle in the simulator.

4. Simulation Methods

4.1. Camera Frontier Exploration: DARPA
SubT Simulator

The camera frontier exploration simulations were run 
on the Open Source Robotics Foundation’s (OSRF) SubT 
Simulator [14] in the Urban Circuit Practice 03 World. A 
preliminary set of simulations was run with the aforemen
tioned simulators and algorithms assuming a 5 m range 
and 90o field of view for the camera. The Camera Fron
tier Exploration algorithm was tested with random values 
in 0.25 < a < 0.75. The Camera Frontier Exploration ap
proach was compared to the more traditional Map Frontier 
Exploration from [11] which seeks to efficiently build a 
map of the environment using LiDAR measurements with
out considering the area searched by the camera. The same 
optimization function, (1), was used with a weighting fac
tor chosen randomly in the range 0.0 < a < 1.0, and util
ity u was replaced by the number of unmapped cells in the 
vicinity of the candidate frontier. The value of a was ran
domly selected to allow comparison between camera and 
map frontier exploration based on different weight values.

4.2. Deep Reinforcement Learning Search: 
RobLearn Simulator

The DRL Search algorithm was developed, trained, and 
tested using the RobLearn simulator. Adjustments to the 
simulator included changing the LiDAR field of view to 
360o and the range to 100 m, changing the diameter of the 
robot to 70 cm to match the SubT simulator, setting the 
starting point to be the origin, and adding three complex 
worlds to the simulation environment to represent the ur
ban environments found in the DARPA SubT Challenge. 
These are shown in Figures 3, 4, and 5. The NN was 
trained on these 3 worlds simultaneously for just under 
550,000 episodes total, and the trainer was configured to 
run 1000 step episodes with steps configured for 2 steps 
per second. The modified simulator is shown in Figure 6



Figure 5: DARPA Urban Circuit Beta Course.Figure 3: DARPA’s Urban Circuit Practice 03 World 
adapted to the Roblearn simulator.

Figure 6: Roblearn simulator with camera view (magenta) 
and LiDAR (green).

Figure 4: DARPA Urban Circuit Alpha Course.

in the world from Figure 3 with the camera view grid over- 
layed in magenta and the last LiDAR frame in green.

Both simulators recorded at the end of each simula
tion the elapsed time in simulated time and the number 
of cells searched. Using this information, the algorithm’s 
effectiveness could be evaluated by calculating the area 
searched in square meters per second for each trial and 
comparing the results.

5. Simulation Results

By modifying the map frontier exploration approach 
from [11] to optimize for camera-based search, more area 
can be searched in less time compared to the original ap
proach as demonstrated by figure 7. Camera frontier explo
ration averaged 2.38 m2/s and a maximum of 3.34 m2/s, 
and map frontier exploration averaged 1.01 m2/s and a 
maximum of 1.85 m2/s. Figure 7 shows our approach, 
camera frontier exploration, outperforms the traditional 

map frontier exploration for nearly all values of a.
The results of the DRL RobLearn simulations are con

tained in Figure 8 and show the progression of learning 
with an increasing number of episodes. The average search 
speed increases with the number of episodes, with the av
erage rate of search of the last 50,000 episodes of the DRL 
training being 4.72 m2/s and a maximum of 7.63 m2/s. The 
average of the DRL training is significantly lower than its 
maximum due to the simulations being run on three rather 
different worlds simultaneously. These preliminary re
sults demonstrate that the DRL method yields significantly 
faster search rates than either of the frontier exploration 
methods and once implemented in like environments this 
comparison could be validated.

6. Conclusions

Our results demonstrate that when considering au
tonomous exploration and search of an unknown environ
ment one can improve upon traditional frontier exploration



Figure 7: Search speed of the frontier exploration algo
rithms vs. a as measured in DARPA SubT Simulator.

Figure 8: Average search speed of the DRL algorithm vs. 
training episodes as measured in the RobLearn Simulator.

techniques by considering camera-based frontiers. Fur
thermore, we have demonstrated the potential of using a 
deep reinforcement learning approach for autonomous ex
ploration and search. Figure 8 shows an upward trend by 
the DRL method, gaining a higher score as more episodes 
are completed leaving more room to grow. However, our 
DRL method must be implemented in a like environment 
as frontier exploration for a complete comparison.

Going forward we plan to train and test our DRL algo
rithm with the ROBLearn software and transfer the trained 
network to the ROS simulator to compare this approach to 
the camera frontier exploration in a head-to-head compar
ison. Additionally, we plan to implement these algorithms 
on physical platforms and thoroughly test them in different 
environments. Ultimately, we aim to use these algorithms 
to compete in the finals of the DARPA SubT Challenge.

References

[1] SubT challenge competition rules urban circuit, 
2019. URL . 
Retrieved on 12/01/2020 from

https://subtchallenge.com/

https://www.subtchallenge.com/resources/.
[2] Tai L, Liu M. A robot exploration strategy based on q- 

learning network. In 2016 IEEE International Confer
ence on Real-time Computing and Robotics (RCAR). IEEE, 
2016; 57-62.

[3] Babaeizadeh M, Frosio I, Tyree S, Clemons J, Kautz J. 
Reinforcement learning through asynchronous advantage 
actor-critic on a GPU. Preprint arXiv:1611.06256 (2016).

[4] Zhang J, Tai L, Boedecker J, Burgard W, Liu M. Neural 
SLAM: Learning to explore with external memory. Preprint 
arXiv:1706.09520 (2017).

[5] Tai L, Paolo G, Liu M. Virtual-to-real deep reinforcement 
learning: Continuous control of mobile robots for mapless 
navigation. In 2017 International Conference on Intelligent 
Robots and Systems (IROS). IEEE, 2017; 31-36.

[6] Marder-Eppstein E. move_base ROS Wiki, 2020. URL 
.http://wiki.ros.org/move_base

[7] Everett M, Chen YF, How JP. Motion planning among 
dynamic, decision-making agents with deep reinforcement 
learning. In 2018 International Conference on Intelligent 
Robots and Systems (IROS). IEEE, 2018; 3052-3059.

[8] Lillicrap TP, Hunt JJ, Pritzel A, Heess N, Erez T, Tassa Y, 
Silver D, Wierstra D. Continuous control with deep rein
forcement learning. Preprint arXiv:1509.02971 (2105).

[9] Surmann H, Jestel C, Marchel R, Musberg F, Elhadj H, Ar- 
dani M. Deep reinforcement learning for real autonomous 
mobile robot navigation in indoor environments. Preprint 
arXiv:2005.13857 (2020).

[10] Mnih V, Badia AP, Mirza M, Graves A, Lillicrap T, Harley 
T, Silver D, Kavukcuoglu K. Asynchronous methods for 
deep reinforcement learning. In International Conference 
on Machine Learning. 2016; 1928-1937.

[11] Niroui F, Zhang K, Kashino Z, Nejat G. Deep reinforce
ment learning robot for search and rescue applications: 
Exploration in unknown cluttered environments. IEEE 
Robotics and Automation Letters 2019;4(2):610-617.

[12] Gerkey B. gmapping - ROS Wiki. URL 
.http://wiki.ros.org/gmapping

[13] Shan T, Englot B, Meyers D, Wang W, Ratti C, Rus 
D. LIO-SAM: Tightly-coupled LiDAR inertial odometry 
via smoothing and mapping. Preprint arXiv:2007.00258 
(2020).

[14] Koenig N. DARPA SubT Virtual Competition Software. 
, 2020.https://github.com/osrf/subt/wiki

Address for correspondence:

Andrew Herdering
CSU Channel Islands
One University Drive
Camarillo, CA 93012
andrew.herdering347@csuci.edu

https://subtchallenge.com/
https://www.subtchallenge.com/resources/
http://wiki.ros.org/move_base
http://wiki.ros.org/gmapping
https://github.com/osrf/subt/wiki
mailto:andrew.herdering347@csuci.edu

