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Abstract— A novel approach is proposed to achieve simulta-
neous localization and mapping (SLAM) based on the signal-to-
noise ratio (SNR) of global navigation satellite system (GNSS)
signals. It is assumed that the environment is unknown and
that the receiver location measurements (provided by a GNSS
receiver) are noisy. The 3D environment map is decomposed into
a grid of binary-state cells (occupancy grid) and the receiver
locations are approximated by sets of particles. Using a large
number of sparsely sampled GNSS SNR measurements and
receiver/satellite coordinates (all available from off-the-shelf
GNSS receivers), likelihoods of blockage are associated with
every receiver-to-satellite beam. The posterior distribution of
the map and poses is shown to represent a factor graph, on
which Loopy Belief Propagation is used to efficiently estimate
the probabilities of each cell being occupied or empty, along
with the probability of the particles for each receiver location.
Experimental results demonstrate our algorithm’s ability to
coarsely map (in three dimensions) a corner of a university
campus, while also correcting for uncertainties in the location
of the GNSS receiver.

I. INTRODUCTION

For decades, global navigation satellite systems (GNSS)
have been widely used for geolocation purposes. Several
satellite systems have already been successfully deployed,
(e.g., America’s GPS and Russia’s GLONASS), with others
to follow soon (Europe’s Galileo and China’s BeiDou). The
end result is that an ever growing constellation of satellites
is broadcasting signals so that earth-based GNSS receivers
can determine their geolocation. GNSS receivers, such as
the iPhone 5S smartphone which supports both GPS and
GLONASS, can passively log information derived from
different satellite signals. This information, while principally
containing the estimated latitude/longitude coordinates of
the receiver (plus an uncertainty value), also contains the
azimuth, elevation, identifier, and signal strength of each
satellite in view.

In this paper, we take the view that GNSS devices, which
are nearly ubiquitous in modern society, are effectively
passive environment sensors. When a mobile GNSS receiver
traverses an area, the line-of-sight (LOS) to some of the
satellites will frequently be blocked by obstacles, such as
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buildings, trees, etc. This will result in non-line-of-sight
(NLOS) signals, characterized by a lower signal-to-noise
ratios (SNR) than LOS signals. Conversely, this observation
can provide geographical information about obstacles: If
the receiver and satellite coordinates are known, whenever
a GNSS signal is blocked it is possible to determine the
direction of an obstacle. An example illustration can be seen
in Figure 1, where at a particular receiver location the paths
to some of the satellites are LOS and some NLOS. By fusing
information from multiple receiver locations and multiple
satellites, it becomes possible to estimate the locations of
obstacles. This simple observation is used in this work to
build 3D maps of unknown environments in a Bayesian
manner. The uncertainty in the GNSS receiver’s location,
which can become high in dense urban environments, is
accounted for by jointly estimating the environment map and
the receiver’s location.

Contributions: We present a solution to the simultaneous
localization and mapping (SLAM) problem using sparsely
sampled GNSS data as the only source of measurements.
By using a physically motivated nonlinear sensor model,
discretizing the environment, and representing uncertainty in
GNSS receiver positions as particles we show that the joint
posterior probability distribution of the map and receiver
positions can be represented by a factor graph. A reduced
complexity Loopy Belief Propagation algorithm can then
be used to efficiently estimate the probabilities of each cell
being occupied or empty, along with the probability of the
particles for each receiver location. Finally, we validate our
SLAM algorithm on a real-world dataset collected using an
off-the-shelf GNSS device.

Related work: Using known 3D maps to improve the po-
sitioning accuracy of GNSS devices in cluttered urban envi-
ronments has been an active research area. Shadow matching
(SM) is a technique where NLOS signals are matched with
corresponding points of reception in the “shadows” of signal-
blocking buildings, thereby constraining the space of possible
receiver locations [1], [2]. While this technique has been used
to achieve significant localization improvement, especially
in urban canyons and heavily cluttered environments, up-to-
date 3D maps of urban environments are not always avail-
able and are expensive to acquire. Surprisingly, despite the
massive amount of location data being gathered by mobile
GNSS devices (such as smartphones), the converse problem
of building 3D maps by using GNSS signal strength has
attracted little attention, with only a handful of papers pub-
lished on the subject. In [3], [4], GNSS-derived information
is used to learn shadows of buildings with respect to different
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Fig. 1. Example SNR measurement scenario with occupancy grid illus-
tration. Blue/red lines represent LOS/NLOS signal paths to satellites, with
NLOS signals characterized by statistically lower SNRs. Light/dark grid
cells approximate empty/occupied space.

satellite configurations, after which ray-tracing methods are
used to construct environment maps. The presented methods,
however, rely on non-probabilistic heuristics resulting in
“hard” maps with no notion of uncertainty. As we will show,
since open areas are much easier (and better) identified than
occupied ones, we believe that capturing such uncertainty in
the form of a probabilistic map (and by using a probabilistic
approach in general) yields more informative results.

Accordingly, it should be noted that probabilistic tech-
niques are now standard in the mapping and localization
literature [5]. For robotic applications, some form of obstacle
detection is used, with sensors (for example lidar [6], [7])
mounted on robots and taking obstacle-range readings. As
in our problem, it is typical that neither the environment nor
the agent’s poses are perfectly known, so that the full SLAM
problem (see [8] for an introduction) must be considered. A
major difference, however, is that our LOS/NLOS sensing
scheme only gives likelihoods of whether particular satellite
signals are blocked or not, yielding no direct information on
obstacle ranges. The assignment of environmental features
to sensor readings (i.e., the data association problem [5]) is
therefore highly non-trivial in our scenario. To alleviate this
problem, we devise a physically-motivated nonlinear sensor
model, and represent the environment as an occupancy grid
[9] en lieu of sets of “landmarks”. We then formulate the
posterior distribution of the latent variables (map and poses)
as a factor graph, much as in GraphSLAM [10]. However,
in our scenario measurement rays observe many (tens to
hundreds of) grid cells, thus intertwining widely separated
portions of the map and forming large cliques in the graph.
Techniques such as GraphSLAM that rely on linearity as-
sumptions and variable elimination are thus impractical if not
inapplicable. Instead, we employ a low complexity version
of Loopy Belief Propagation [11] to efficiently estimate the
marginal distributions of the variables.

II. BELIEF PROPAGATION BASED SLAM ALGORITHM

Our algorithm relies on ray tracing from sets of hypo-
thetical receiver locations (particles) towards given satellites.
Probabilistic “beams” of rays – sets of parallel rays ema-
nating from the same particle set and heading to the same
satellite – are then assigned likelihoods of being LOS or
NLOS, depending on the measured satellite SNR values.
Finally, these beams are stitched together to form a soft prob-
abilistic occupancy map using Loopy Belief Propagation,
which concurrently re-weights position particles, yielding
revised location estimates as well.

A. Mathematical formulation

We model both the environment and receiver positions
non-parametrically: 1) The map is represented as a 3D grid
of cells, m = {mi}L

i=1, with mi ∈ {0,1} denoting empty and
occupied space; 2) The space of possible GNSS receiver
trajectories x = {xt}T

t=1 is represented using sets of particles,
so that individual positions are xt ∈ {xk

t }K
k=1. The SLAM

problem is then formulated as estimating the marginal dis-
tributions of each latent variable mi and xt .

1) SNR measurement model: To arrive at the SLAM
solution, data gathered and reported by GNSS receivers is
used. The first type of information is the satellite SNR
measurements, which are noisy and consist of T vector SNR
readings, z = {zt}T

t=1, where zt = [zt,1, . . . ,zt,Nt ], and Nt is
the number of satellites in view for the tth data sample.
Together with individual SNR readings, the receivers also
provide satellite elevations and azimuths [θt,n,φt,n], which we
consider noiseless. Under the assumption of a static world
(where the map m does not change over time), the SNR
measurements can be modeled as conditionally independent
given the map and poses, yielding the following factorization

p(z|m,x) = ∏
t,n

p(zt,n|m,xt). (1)

In reality, the SNR of a given GNSS signal depends on
additional factors, including environmental parameters and
satellite elevation. To that end, useful statistical models exist
for the narrowband Land to Mobile Satellite (LMS) channels
of interest, such as those presented in [12], [13]. However,
to simplify the computation of messages in our LBP-based
inference algorithm, we use the following sensor model

p(zt,n|m,xk
t ) =

{
fLOS(zt,n), mi = 0 ∀i ∈M (t,n,k)
fNLOS(zt,n), otherwise

(2)
where M (t,n,k) contains the indices of the cells intersected
by the ray starting at particle xk

t , in the direction of satellite n
at time t. In other words, an SNR reading is LOS-distributed
if all cells intersected by its associated receiver-satellite ray
are empty; otherwise, it is NLOS-distributed. As shown in
Figure 2, the SNR under LOS and NLOS hypotheses is mod-
eled using Rician and log-normal distributions, both being
common approaches for modeling such wireless channels.
Defining the LOS density on the decibel scale, we have after
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a change of variables

fLOS(rdB) =
ln10
20

10rdB/20 fRice

(
10rdB/20

)
,

where

fRice(r) =
2(KR +1)r

Ω̂
exp
(
−KR−

(KR +1)r2

Ω̂

)
× I0

(
2

√
KR(KR +1)

Ω̂
r

)
, r ≥ 0

is the Rician fading density [14], I0(·) is the 0th order
modified Bessel function of the first kind, Ω̂ is the estimated
total channel power, and KR is the Rician “K factor” (ratio of
LOS to diffuse power). As for the NLOS log-normal fading
model, in decibels it is simply described by a normal density
with mean µ and variance σ2.

SNR (dB) →

P
ro
b
.
d
en
si
ty

→

fLOS

fNLOS

Fig. 2. The LOS/NLOS satellite channels were modeled according to
Rician/log-Normal distributions.

2) Positioning error model and particle sampling: The
second type of information used are the receiver position
estimates (GNSS fixes), which are noisy and modeled as
independent Gaussian random variables

yt = xt + et , et ∼N (0,Ct). (3)

As in Chapter 7 from [15], we estimate the error covariance
matrix Ct using the formula for HDOP scaled by the un-
certainty reported by the receiver, so that the position fixes
do not depend directly on the state of the map. Given the
position uncertainties, the particles {xk

t } are then sampled
according to N (yt ,Ct) and assigned equal weights. Note
that, since (3) assumes the pose errors are uncorrelated, while
in reality consecutive GNSS fixes are known to be correlated,
it is important that the input data is sparsely sampled in time.

3) The map posterior: Assuming no a-priori information
on the map and poses (such as information on building
locations or a motion model governing x), and making use of
(1),(3), the posterior distribution of the latent variables given
the measurements factorizes as follows

p(m,x|y,z) ∝ p(y,z|m,x) = p(z|m,x)p(y|m,x,z)

= ∏
t,n

p(zt,n|m,xt) ·∏
t

p(yt |xt). (4)

B. Solving the SLAM problem

The overarching idea of this paper is that the factorization
(4) represents a factor graph on which the Loopy Belief
Propagation algorithm can be used to perform the SLAM
computation.

(a) Measurement scenario

m1

m2

m3

m4

m5

m6

x1

g1

x2

g2

f1,1

f1,2

f2,1

f2,2

(b) Factor graph

Fig. 3. Simplified measurement scenario with T =N1 =N2 =K = 2 and its
corresponding factor graph, with circles/squares representing variable/factor
nodes.

1) The factor graph: A factor graph G=({X ,F},E), with
variable nodes X , factor nodes F , and edges E, describes
the factorization of a global function into a product of
local functions (factors). It is a bipartite graph where an
edge between a factor node and a variable node appears
if and only if the variable is an argument of the factor.
Referring to Figure 3 as an example, in our graph there
are two classes of variables and factors, X = {xt}

⋃
{mi}

and F = { ft,n}
⋃
{gt}. Each “SNR measurement” factor node

ft,n corresponds to p(zt,n|m,xt), and each “receiver position”
factor gt is associated with p(yt |xt).

While each gt is singly connected to xt , the edges between
SNR measurements and map cells in the factor graph are only
known after ray tracing. The indices of the {mi} adjacent
to ft,n are M (t,n) =

⋃
k M (t,n,k). Physically speaking,

M (t,n) describes the set of cells sensed by the “beam” of
parallel rays emanating from hypothetical receiver positions
{x1

t , . . . ,x
K
t } in the direction of satellite n.

2) Low complexity LBP message passing: As can be
seen in Figure 3, the factor graph representing the posterior
contains cycles. An efficient algorithm used for approximate
inference on such graphs, which has also been used for
SLAM [16], is the Loopy Belief Propagation (LBP) (or Sum-
Product) algorithm [11]. Essentially, LBP is a message pass-
ing (MP) algorithm whereby messages are exchanged locally
along edges of the factor graph until convergence (assumed
but not guaranteed in loopy graphs). In our implementation,
we use synchronous MP, as shown in Figure 4.

At the variable nodes, computing the outgoing messages
is simple. The first step in arriving at them is to compute
the variables’ beliefs, which are also used to determine
convergence (see Section II-B.3). For nodes mi and xt , on
their respective domains (mi ∈ {0,1} and xt ∈ {x1

t , . . . ,x
K
t })

the beliefs are given by

bi(mi) ∝ ∏
(t,n)∈F (i)

U(t,n)→i(mi), bt(xt) ∝

Nt

∏
n=1

V(t,n)→t(xt),
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ft,n mixt
vt→(t,n)(xt) ui→(t,n)(mi)

(a) Step 1: Send all messages from variables to factors

ft,n mixt
V(t,n)→t(xt) U(t,n)→i(mi)

(b) Step 2: Send all messages from factors to variables

Fig. 4. Illustration of one iteration of synchronous MP. Note that, because
gt is singly connected and all particles are initialized with the same weights,
gt continually sends uninformative “flat” messages to xt , with the effect that
gt can be ignored in the MP framework.

where U(t,n)→i, V(t,n)→t are incoming messages from ft,n,
F (i) = {(t,n) : i ∈M (t,n)} indexes the { ft,n} neighboring
mi, and the beliefs are normalized to sum to one. These
nodes’ outgoing messages to factor node ft,n can then be
written as

ui→(t,n)(mi) ∝
bi(mi)

U(t,n)→i(mi)
, vt→(t,n)(xt) ∝

bt(xt)

V(t,n)→t(xt)
,

which are also normalized to sum to one after computation.
In the other direction, computing the factor-to-variable

messages is more complicated. For example, naively apply-
ing (6) in [11] to the calculation of the messages from ft,n
to xt , and evaluating at xt = xk

t , yields

V(t,n)→t(x
k
t ) = ∑

m
p(zt,n|m,xk

t ) ∏
j∈M (t,n)

u j→(t,n)(m j),

which involves the summation of 2|M (t,n)| terms. Since
|M (t,n)| (the degree of ft,n) counts the number of cells
intersected by SNR measurement (t,n), which in our setup is
often in the hundreds, directly evaluating the above expres-
sion is unfeasible. However, upon substitution of the binary
sensor model (2), due to the normalization of the incoming
messages the above expression simplifies to

V(t,n)→t(x
k
t ) = γ

k
t,n fLOS(zt,n)+

(
1− γ

k
t,n

)
fNLOS(zt,n),

where
γ

k
t,n = ∏

j∈M (t,n,k)
u j→(t,n)(0),

which is of linear complexity in |M (t,n,k)|. Likewise, for
the message from ft,n to mi we initially have the (even more)
complicated expression

U(t,n)→i(mi) = ∑
m\mi

∑
k

p(zt,n|m,xk
t )

×vt→(t,n)(x
k
t ) ∏

j∈M (t,n)\i
u j→(t,n)(m j)

However, again by consequence of the binary sensor model
(2), the above expression reduces to

U(t,n)→i(mi) = αt,n,i +βt,n,i(mi)

with
αt,n,i = ∑

k/∈K (t,n,i)
vt→(t,n)(x

k
t )

×
{

γ
k
t,n fLOS(zt,n)+

(
1− γ

k
t,n

)
fNLOS(zt,n)

}
,

βt,n,i(0) = ∑
k∈K (t,n,i)

vt→(t,n)(x
k
t )

×
{

γ
k
t,n,i fLOS(zt,n)+

(
1− γ

k
t,n,i

)
fNLOS(zt,n)

}
,

βt,n,i(1) = fNLOS(zt,n) ∑
k∈K (t,n,i)

vt→(t,n)(x
k
t ),

where
γ

k
t,n,i = γ

k
t,n/ui→(t,n)(0),

and K (t,n, i) = {k : i∈M (t,n,k)} maintains a list of which
particles among {x1

t , . . . ,x
K
t } observe cell mi when looking

at the nth satellite.
3) LBP convergence: In this paper, convergence of LBP is

declared when the mean of all variables’ belief residuals falls
below a predefined threshold R̄th. To limit oscillations and
help ensure that LBP converges, as is common in practice
we apply message damping with damping factor ρ ∈ [0,1)
(see [17] for a detailed discussion on the subject). The belief
residuals of mi and xt are defined via the L1 norm, as in [18]
(4.1):

Ri ,
1

∑
mi=0

∣∣bi(mi)−b′i(mi)
∣∣ , Rt ,

K

∑
k=1

∣∣∣bt(xk
t )−b′t(x

k
t )
∣∣∣

where b′i,b
′
t are the beliefs from the previous iteration. Upon

convergence, the approximate SLAM solution is simply
taken to be the beliefs of all the latent variables, i.e., the
marginal posteriors of the map and poses are estimated as
p(mi|y,z)≈ bi(mi) and p(xt |y,z)≈ bt(xt).

III. EXPERIMENTS AND RESULTS

To verify the efficacy of our proposed algorithm, we set
out to map the eastern corner of the University of California,
Santa Barbara campus (see Figure 5). A Samsung Galaxy
Tablet 2.0 running the Android operating system was used
as a GPS/GLONASS collecting device. Over over the course
of several days we gathered a total of 34 test datasets, where
the duration of each test ranged from 3 to 23 minutes and
measurement data was logged at 1 Hz. During a typical test
SNR readings in the range of 7−48 dB were recorded and
approximately 13 satellites were visible at any one time.

To summarize the parameters used, a grid size of 5 m
was selected, and the map height was set to 30 m. For
the Rician channel hypothesized under LOS conditions, Ω̂

for each SNR reading was to the maximum of all linear
SNR readings 10zt,n/10 from the same satellite during the
same time window. The Rician K factor was set constant to
KR = 2, for simplicity, indicating moderate fading conditions.
Guided roughly by the results in [13], [19], for the log-
normal (NLOS) distribution we set µ to 18 dB below the
reference power level Ω̂, and σ = 10 dB, allowing for a
large variability in shadowing conditions. When visibility to
a particular satellite was temporarily lost in the middle of an
observation window (presumably most often caused by total
occlusion), the satellite coordinates were interpolated and
LOS/NLOS likelihoods of 0.1/0.9 were assigned. Because
the received signal strength from low elevation satellites
is known to vary more widely [19] (thus producing more
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Fig. 5. Google Maps aerial view of the eastern portion of the University
of California, Santa Barbara campus. Two typical receiver paths as logged
by the GNSS collecting device are shown in yellow (shorter test run) and
magenta (longer test run).

“noisy” SNR readings), measurements from satellites with
elevations below 10◦ were discarded, similar to [3].

In all, the 34 datasets comprised of 5.0× 103 position
samples and 6.5× 104 SNR measurements interacting with
4.2× 104 grid cells. To mitigate the effects of spatially
correlated geolocation errors, the 5.0×103 position samples
represent a factor of 5 downsampling of the original datasets.
Although in our experiment data was essentially thrown away
by downsampling, in a real-world application sparse sam-
pling would allow for potential energy savings at the GNSS
receiver. To represent the possible receiver positions for each
time sample, we used K = 30 quasi-random particles (drawn
from a Sobol sequence [20] which was then transformed to a
set of Gaussian samples). Compared to drawing independent
samples, low discrepancy sampling more uniformly sepa-
rated the particles, allowing us to use smaller K. For the LBP-
based inference step, ρ = 0.4 damping and a convergence
threshold of R̄th = 10−3 were used. With these settings LBP
terminated after 60 iterations, taking 13 minutes on a 64 bit
PC with a 3.20 GHz Intel Core i7 processor and 32 GB
of RAM running MATLAB R2013b. During runtime, total
system memory usage never exceeded 6 GB.

A portion of the resulting map – that is, the unprocessed
LBP output – can be seen in Figure 6. The dark areas
are those where the probability of occupancy is close to
one, the white areas represent likely open-space, and the
light blue regions are unobserved. The green border encloses
the feasible mapping region (borders the convex hull of
all position samples). Data from OpenStreetMap was used
to provide building contours, shown in red. Although the
map includes errors, it closely resembles the aerial view in
Figure 5. Note that several dark spots can be seen outside
of buildings (e.g., the dark spot on the south side of the
southernmost building); those often correspond to trees, as
can be seen from the aerial view. One interesting aspect
of our mapping problem can be clearly noticed, however:
open areas are much better mapped than occupied ones. The

Fig. 6. Horizontal slice (5-10 m above ground level) of generated map
covering the eastern portion of the University of California, Santa Barbara
campus. The measurement region borders are marked in green, and building
contours obtained from OSM are shown in red.

(a) 0-5 m (b) 5-10 m (c) 10-15 m

(d) 15-20 m (e) 20-25 m (f) 25-30 m

Fig. 7. Horizontal slices of the generated map around Kohn Hall at UCSB.

reason is that, while a LOS signal is observed if all cells
it passes through are empty, a NLOS reading only informs
that some cell(s) occluded it. In our LBP-based algorithm,
when a NLOS signal penetrates a large occupied region,
each intersected cell in the region will have a tendency to
“blame” (via message passing) other cells for the occlusion.
The end result is that “gray zones” appear around large
buildings, while open space is more clearly marked in white.
We suspect that further processing of the generated map
(using, e.g., thresholding) may improve the map quality, but
such methods are beyond the scope of this paper.

To assess the 3D mapping capability of our algorithm, the
first 6 layers of the resulting map are shown in Figure 7
for the area around Kohn Hall, which is approximately 10
meters in height. As can be seen in Figure 7(a) and 7(b),
the outline of the building is well approximated by the map.
Additionally, the 15−20 meter horizontal layer of the map
and above, shown in Figure 7(d)–7(f), correctly represent
open space. The lingering gray area in Figure 7(c) can be
explained by the fact that no LOS satellite signals passed
through that portion of the map. Note, however, that any
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North

Fig. 8. Positioning improvement around Kohn Hall. The true receiver
path is marked with the dashed green line, with blue/magenta ellipses
representing positioning uncertainty before/after LBP.

ground-based sensor platform would likely suffer from this
problem as well.

Finally, an example of the localization improvement can
be seen in Figure 8, which shows a portion of a dataset
isolated for analysis. While positioning uncertainty is lower
after LBP in general, of particular interest are the points
along the west side, north-west corner, and north side of
the building. The proposed algorithm assigns low weights to
particles that are in the building, and more highly weights
those on the sidewalk near the true path, reducing uncertainty
and improving overall geolocation accuracy. Without this
position correction, the resulting map would have underes-
timated the occupancy of the cells on the northern wall of
the building. Separately, we note that receiver positioning
on the south side of the building on the sidewalk is more
or less unimproved by our algorithm. This is to be expected
because the positioning uncertainty there was lower to begin
with (since fewer signal-occluding buildings are nearby).

IV. CONCLUSION

A novel approach to SLAM based on sparsely sampled
GNSS SNR readings was presented and validated on a
real-world dataset. The environment is represented as an
occupancy grid and the receiver positions are approximated
by sets of particles. In essence, our approach relies on
ray tracing to satellites from potential receiver positions
(particles), and assigning sets of parallel rays likelihoods
of being LOS/NLOS depending on the corresponding SNR.
Afterwards, these rays are stitched together to form a soft
probabilistic map using Bayesian Belief Propagation, which
concurrently refines position estimates as well.

This work is one of the first steps in a broader effort on
GNSS SNR based mapping and localization improvement.
Several research opportunities are: employing asynchronous
BP algorithms to perform real-time localization and map-
ping; developing more advanced LOS/NLOS sensor models
with learned parameters; experimenting with much larger
crowd-sourced datasets, and implementing the proposed ap-
proach in a cloud computing framework; and modifying

the algorithm to support advanced motion models for more
densely sampled GNSS data.

ACKNOWLEDGEMENT

The authors would also like to acknowledge Adam Ehrlich
for developing the Android application used to log GPS data.

REFERENCES

[1] M. Obst, S. Bauer, P. Reisdorf, and G. Wanielik, “Multipath detection
with 3D digital maps for robust multi-constellation GNSS/INS vehicle
localization in urban areas,” in Proc. of the Intelligent Vehicles
Symposium., 2012, pp. 184–190.

[2] L. Wang, P. D. Groves, and M. K. Ziebart, “Shadow matching:
Improving smartphone GNSS positioning in urban environments,” in
Proc. of the China Satellite Navigation Conference., 2013, pp. 613–
621.

[3] K. Kim, J. Summet, T. Starner, D. Ashbrook, M. Kapade, and I. Essa,
“Localization and 3D reconstruction of urban scenes using GPS,” in
Proc. of the IEEE International Symposium on Wearable Computers.,
2008, pp. 11–14.

[4] A. Weissman, B. Ben-Moshe, H. Levi, and R. Yozevitch, “2.5D
mapping using GNSS signal analysis,” in Proc. of the Workshop on
Positioning Navigation and Communication, 2013, pp. 1–6.

[5] S. Thrun, “Robotic mapping: A survey,” Exploring Artificial Intelli-
gence in the New Millennium, vol. 1, pp. 1–35, 2003.

[6] S. Thrun, W. Burgard, and D. Fox, “A real-time algorithm for mobile
robot mapping with applications to multi-robot and 3D mapping,” in
Proc. of the International Conference on Robotics and Automation.,
vol. 1, 2000, pp. 321–328.

[7] A. Howard, D. F. Wolf, and G. S. Sukhatme, “Towards 3D mapping
in large urban environments,” in Proc. of the International Conference
on Intelligent Robots and Systems., vol. 1, 2004, pp. 419–424.

[8] S. Thrun, “Simultaneous localization and mapping,” in Robotics and
cognitive approaches to spatial mapping. Springer, 2008, pp. 13–41.

[9] A. Elfes, “Using occupancy grids for mobile robot perception and
navigation,” Computer, vol. 22, no. 6, pp. 46–57, 1989.

[10] S. Thrun and M. Montemerlo, “The GraphSLAM algorithm with
applications to large-scale mapping of urban structures,” International
Journal on Robotics Research, vol. 25, no. 5/6, pp. 403–430, 2005.

[11] F. Kschischang, B. Frey, and H.-A. Loeliger, “Factor graphs and the
sum-product algorithm,” IEEE Trans. on Information Theory, vol. 47,
no. 2, pp. 498–519, 2001.

[12] A. Abdi, W. C. Lau, M.-S. Alouini, and M. Kaveh, “A new simple
model for land mobile satellite channels: first-and second-order statis-
tics,” IEEE Trans. on Wireless Communications, vol. 2, no. 3, pp.
519–528, 2003.

[13] C. Loo, “A statistical model for a land mobile satellite link,” IEEE
Trans. on Vehicular Technology, vol. 34, no. 3, pp. 122–127, 1985.

[14] A. Abdi, C. Tepedelenlioglu, M. Kaveh, and G. Giannakis, “On the
estimation of the K parameter for the Rice fading distribution,” IEEE
Communications Letters, vol. 5, no. 3, pp. 92–94, 2001.

[15] E. D. Kaplan and C. J. Hegarty, Understanding GPS: Principles and
Applications, 2nd ed.

[16] A. Ranganathan, M. Kaess, and F. Dellaert, “Loopy SAM,” in Proc.
of the International Joint Conference on Artificial Intelligence., 2007,
pp. 6–12.

[17] K. P. Murphy, Y. Weiss, and M. I. Jordan, “Loopy belief propagation
for approximate inference: An empirical study,” in Proc. of the
Fifteenth Conference on Uncertainty in Artificial Intelligence, 1999,
pp. 467–475.

[18] J. E. Gonzalez, Y. Low, C. Guestrin, and D. O’Hallaron, “Distributed
parallel inference on large factor graphs,” in Proc. of the Conference
on Uncertainty in Artificial Intelligence, 2009, pp. 203–212.

[19] F. Perez-Fontan, M. Vazquez-Castro, S. Buonomo, J. P. Poiares-
Baptista, and B. Arbesser-Rastburg, “S-band LMS propagation chan-
nel behaviour for different environments, degrees of shadowing and
elevation angles,” IEEE Trans. on Broadcasting, vol. 44, no. 1, pp.
40–76, 1998.

[20] H. Niederreiter, “Low-discrepancy and low-dispersion sequences,”
Journal of number theory, vol. 30, no. 1, pp. 51–70, 1988.

1982


