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ABSTRACT
Geopositioning using Global Navigation Satellite Systems
(GNSS), such as the Global Positioning System (GPS), is
inaccurate in urban environments due to frequent non-line-
of-sight (NLOS) signal reception. This poses a major prob-
lem for mobile services that benefit from accurate urban
localization, such as navigation, hyperlocal advertising, and
geofencing applications. However, urban NLOS signal recep-
tion can be exploited in two ways. First, one can use satel-
lite signal-to-noise ratio (SNR) measurements crowdsourced
from mobile devices to create 3D environment maps. This is
possible because, for example, the SNR of signals obstructed
by buildings is lower on average than that of line-of-sight
(LOS) signals. Second, in a sort of reverse process called
Shadow Matching, SNR readings from a particular device
at an instant in time can be compared to 3D maps to pro-
vide real-time localization improvement. In this paper we
give a brief overview of how such a system works and de-
scribe a scalable, low-cost, software-only architecture that
implements it.
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1. INTRODUCTION
While many mobile applications require accurate geolo-

calization outdoors, it is an unfortunate fact that in dense
urban environments positioning accuracy using the Global
Positioning System (GPS) degrades significantly, with er-
rors on the order of tens of meters [6]. The main culprit
for this performance bottleneck is that in large cities the
line-of-sight (LOS) to various satellites becomes occluded
by buildings, leading to non-light-of-sight (NLOS) and mul-
tipath signal reception. As a result, the only satellites useful
for trilateration come from a narrow area in the sky, yielding
poor satellite geometries and positioning accuracy, particu-
larly in the cross-street direction. The underlying geometry
problem is not solved even as additional constellations of
Global Navigation Satellite Systems (GNSS) – such as the
Russian GLONASS, European Galileo, and Chinese Beidou
– become available and supported by mobile devices.

One promising method to address the aforementioned satel-
lite Shadowing Problem is Shadow Matching (SM) [7]. In
SM, urban 3D map databases combined with real-time satel-
lite coordinates can be used to compute the shadows of
buildings with respect to various satellites. Then, low (or
high) satellite signal-to-noise ratio (SNR) measurements can
be used to match the device’s location to areas inside (or
outside) various shadows, thereby reducing positioning un-
certainty. Since, for example, any GNSS-capable Android
smartphone or tablet can provide via the Location Appli-
cation Programming Interface (API) its estimated position
with uncertainty, as well as the satellite coordinates and
SNRs, SM can be done entirely in software without any ad-
ditional infrastructure. A major problem with SM, however,
is that update-to-date 3D maps of urban environments are
not always available, and even if they are they can be ex-
pensive to obtain. Fortunately, as shown first in [4] and as
we further elaborated on in [1, 2], large amounts of satellite
SNR data can be used to create 3D maps. Intuitively, this
is possible by assigning many crisscrossing receiver-satellite
rays likelihoods of blockage based on measured SNRs, and
then stitching these rays together into 3D maps. If the data
is crowdsourced from many GNSS devices and cloud-based
computation is leveraged, building such 3D maps can be
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Figure 1: Proposed system architecture.

done cheaply and scalably, enabling SM-based positioning
improvement anywhere GNSS data is regularly collected.

2. SYSTEM OVERVIEW
A simplified schematic representing a version of the sys-

tem we proposed in our earlier conference paper [3] is shown
in Figure 1. In this system, a Software Development Kit
(SDK) is distributed among many mobile devices which al-
lows for crowdsourcing of GNSS data. For each device, this
GNSS data includes its estimated latitude and longitude co-
ordinates with an uncertainty value from various time in-
stants, along with the azimuth, elevation, and SNR of each
satellite in view. Cloud-based machine learning routines are
then used to process large amounts of this data into proba-
bilistic 3D maps of the environment; these maps are contin-
ually updated as additional data becomes available. We give
a brief overview the algorithms used for mapping in Section
3. Once a probabilistic estimate of the 3D environment is
available in a given area, GNSS data from a single mobile
device can be streamed via the same SDK to a cloud-based
Bayesian filter which performs SM. Finally, revised position
estimates are fed back to the device in real-time; we give a
summary of the localization improvement filter in Section
4. As previously mentioned, the above system can be imple-
mented entirely in software at the application level, although
it should be acknowledged that certain aspects of the po-
sitioning improvement portion could be integrated directly
with the GNSS receiver, for example as proposed in [5], with
potentially additional localization gains.

3. PROBABILISTIC 3D MAPPING
The considered mapping problem can be succinctly de-

scribed as using noisy GNSS position and SNR measure-
ments, y and z, to estimate a 3D map m. In our previous
works [1–3] we proposed several different methods to com-
pute probabilistic estimates of the map. A common thread
among all three approaches is the choice of an Occupancy
Grid (OG) model, where the environment is partitioned into
a 3D grid of cube-shaped “voxels” (or “cells”) mi, each of
which can either be empty (mi = 0) or occupied (mi = 1).
For the sake of brevity, in this paper we skip a lengthy dis-
cussion justifying this choice of a map model. Assuming
this representation, a natural question is then the following:
Given all of the measurement data, what is the likelihood
that each voxel is occupied (or empty)? Mathematically,

Figure 2: Google Maps aerial view of downtown
Santa Barbara, with GNSS traces in red and
mapped region outlined in yellow.

Figure 3: Horizontal layers of the generated
occupancy map of downtown Santa Barbara.
White/black corresponds to areas identified as
empty/occupied, with shades of grey in between.

this is equivalent to determining the marginal posterior dis-
tributions, p(mi|y, z), for all i. However, because the exact
paths of the devices x are unknown, to arrive at a solution
for the map it turns out one also must estimate quantities
of the form p(xj

t |y, z), where xj
t is the position of a partic-

ular device j at time t. In the robotics community, this is
referred to as the Simultaneous Localization and Mapping
(SLAM) problem, although in this context it is SLAM for
the purposes of mapping, not localization.

The major difference between the works [1–3] is that each
strikes a different balance between computational efficiency
and mapping accuracy. At one extreme is [3] which describes
a lightweight algorithm to recursively estimate the map and
receiver path given sequential GNSS measurements. How-
ever, in that work (as in virtually all recursive OG map-
ping techniques), we rely on cell independence assumptions
which, although vastly simplifying, are known to be flatly in-
correct and lead to overconfident results. In [2] we propose
to explicitly model the dependencies of the mapping prob-
lem using a Bayesian network, and apply a scalable version
of Loopy Belief Propagation, a graphical machine learning
algorithm, for inference purposes. In that work, though,
we make the simplifying assumption that all GNSS position
fixes are error-free, i.e., x = y. In the third paper [1], we
relax this assumption and again tackle the SLAM problem
using a similar but more complex graphical framework. Ex-
ample experimental results of this last approach, leveraging
OpenStreetMap data as a-priori information on the first two
layers, can be seen Figures 2 and 3, which show the traces
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Figure 4: Positioning improvement at UCSB: true
path in yellow, standalone GNSS output in red, and
corrected path in light blue.

Figure 5: Positioning improvement in downtown
Santa Barbara: true path in yellow, a-GNSS out-
put in red, and corrected path in light blue.

and the generated OG map for about 25 hours of input data
from 4 Android devices in downtown Santa Barbara.

4. REAL-TIME POSITIONING
The localization improvement problem can be described

as follows: Given a stream of noisy GNSS SNR and loca-
tion data for device j, denoted zj and yj , along with a noisy
estimate of the map m, what is the best estimate of the de-
vice’s current location xj

t , and how confident are we in that
estimate? Denoting the occupancy probabilities of the map
cells around the device as oj , and treating these as addi-
tional measurements, the quantity we are then interested in
is p(xj

t |zj , yj , oj). In [3] we describe a particle filtering ap-
proach which allows one to apply SM against the occupancy
map in a recursive, real-time fashion, and purely in software
at the mobile application level. However in this work we
ignored the fact that the errors in successive GNSS position
fixes are highly temporally correlated, owing especially (but
not only) to the fact that these fixes are taken from the out-
put of an Android device’s navigation filter. Recently, we
have developed methods to more accurately handle these
correlated errors, resulting in significantly better localiza-
tion, particularly where native device positioning becomes
overconfident and inaccurate.

Some example results of this approach can be seen Figures
4 and 5, which show Google Maps aerial views of positioning
improvement for two different mobile devices on the UCSB
campus and in downtown Santa Barbara. For the interested
reader, the maps used to enable this location improvement
at UCSB are displayed in [1]. In the UCSB experiment, a
Samsung Galaxy Tab 2 was used with only GPS+GLONASS
enabled to arrive at the original position fixes, whereas in
downtown Santa Barbara a Motorola Moto X smartphone

with cellular assisted GPS+GLONASS (a-GNSS) was em-
ployed. It should be noted that the positioning algorithms
discussed can generally supplement any assisting technolo-
gies (such as Wi-Fi, cellular, inertial, etc.) running natively
on the device. Developing additional experimental results
for such scenarios is an important area of future work.

5. CONCLUSION
The urban satellite shadowing problem leads to severely

degraded GNSS performance, negatively impacting many
mobile services which benefit from or rely on accurate geolo-
calization outdoors. However, it is possible to confront the
source of these errors by using crowdsourced GNSS data to
create 3D models of the urban environment, and then match-
ing against these models in real-time to produce localization
enhancement. Furthermore, such a system can be cheaply
and scalably implemented in application level software with-
out any additional infrastructure required. Experimentally
demonstrating the scalability of the proposed mapping al-
gorithms and the efficacy of the real-time positioning filters
is a major focus of ongoing and future work.
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