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Abstract— We investigate a computationally and memory
efficient algorithm for radio frequency (RF) source-seeking with
a single-wing rotating micro air vehicle (MAV) operating in
an urban canyon environment. We present an algorithm that
overcomes two significant difficulties of operating in an urban
canyon environment. First, Global Positioning System (GPS)
localization quality can be degraded due to the lack of clear
line of sight to a sufficient number of GPS satellites. Second,
the spatial RF field is complex due to multipath reflections
leading to multiple maxima and minima in received signal
strength (RSS). High quality GPS localization is maintained by
observing the GPS signal to noise ratio (SNR) to each satellite
and making inferences about directions of high GPS visibility
(allowable) and directions of low GPS visibility (forbidden). To
avoid local maxima in RSS due to multipath reflections we
exploit the rotation of the MAV and the directionality of its RF
antenna to derive estimates of the angle of arrival (AOA) at
each rotation. Under mild assumptions on the noise associated
with the AOA measurements, a greedy algorithm is shown to
exhibit a global recurrence property. Simulations supplied with
actual GPS SNR measurements indicate that this algorithm
reliably finds the RF source while maintaining an acceptable
level of GPS visibility. Additionally, outdoor experiments using
Lockheed Martin’s Samarai MAV demonstrate the efficacy of
this approach for static source-seeking in an urban canyon
environment.

I. INTRODUCTION

Unmanned Aircraft Systems (UAS) are becoming preva-
lent in many civilian and military applications such as
surveillance, weather monitoring and critical infrastructure
inspection. Due to their lower size, weight, required power,
cost and ease of deployment/maintenance, the class of UAS
that will be most widely deployed will be the portable (small
or micro) UAS that typically weigh no more than a few
pounds (see [1] for a recent classification of UAS based on
gross weight and flight endurance). Of this group, rotary
wing UAS are particularly attractive in applications where
an ability to hover, takeoff/land vertically and/or operate at
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Fig. 1. The location of the specific GPS satellites relative to the MAV
as well as their SNR readings are important considerations in determining
which directions for the MAV to travel. When a GPS receiver passes too
close to a building the signal will be blocked by the obstacle resulting in
lower signal-to-noise ratio and degraded localization.

street level in urban areas while navigating through tight
environments are of great value. These Micro Air Vehicles
(MAVs) hold great promise for emerging applications includ-
ing perimeter security, urban tracking and for making motion
pictures.

During these missions, it is crucial for the MAV to main-
tain an accurate estimate of its position in order to complete
the defined objectives. MAVs are typically equipped with a
navigation suite consisting of an integrated inertial navigation
system (INS) and GPS. Given the low quality INS used on
MAVs, the GPS is especially important to keep the INS
error bounded as the MAV moves, enabling guidance and
control loops to be successfully closed around the vehicle
states [2]. Unfortunately, this strong dependence on GPS
poses its own unique set of problems for operation in urban
environments because GPS signals can become degraded by
features such as tall buildings and urban canyons, causing
signal outage or non-line-of-sight (NLOS) conditions. If the
MAV passes close to a building, some of the satellite signals
may become blocked as shown in Figure 1. This blockage of
the direct line-of-sight (LOS) leads to multipath signals and
large errors in the position estimate, which can have adverse
impact on the overall nav solution [3]. To mitigate this, it
is important to develop: (a) alternate sources of navigation
aiding information; and (b) planning and control algorithms
for navigating effectively in GPS-degraded environments
which would, for instance, enable the MAV to navigate
around obstacles while keeping a clear LOS to the majority
of the satellites, thereby minimizing errors in the position
estimates.

In this work, we describe a planning and control scheme
for a wholly rotating MAV to autonomously fly along routes
that maintains high quality of GPS connectivity while track-
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ing an RF source in degraded environments. To maximize
RF link strength, we use a greedy algorithm in which the
MAV estimates Angle of Arrival (AOA) to the source at
each rotation, and then follows the estimated direction until
the next rotation is complete. We showed the convergence
of this algorithm for the obstacle free case in our previous
work [4], while here we consider the case where the RF
source is located among buildings in an urban environment.
To maintain connectivity to GPS, the MAV detects the
direction of nearby buildings via SNR measurements and
circumnavigates the obstacles if necessary thus avoiding
areas of poor GPS connectivity. This approach offers three
unique benefits. First, it offers a low size, weight, power and
cost (SWAPC) approach for navigating in the GPS degraded
environment because it is based entirely on information
which can be decoded by GPS receivers already present
on MAVs. It does not require the use of extra hardware
such as lidars needed for SLAM-based techniques. Second,
it enhances the survivability of the MAV and sustains its
mission tempo because it enables the MAV to keep operating,
seeking out regions of higher GPS SNR, rather than the
current practice of loitering or hovering when GPS quality
degrades. Third and perhaps most significant, this technique
enables the potential use of the GPS as a low SWAPC long
range obstacle avoidance sensor for long-term path planning
on MAVs (making up for MAVs’ inability to carry bulky and
expensive obstacle avoidance sensors such as LIDAR) since
paths that improve quality of global positioning are typically
obstruction free as well.

Path planning under state estimation uncertainty has been
studied in a number of contexts in recent years. A prob-
abilistic navigation method based on the motion estimation
uncertainty is presented in [5] that produces paths with toler-
able risk of collision with obstacles. A Gaussian augmented
Markov decision process method has been shown to be an
effective approach to navigating in degraded GPS environ-
ments [6]. In [7], Rapidly exploring Random Belief Trees
(RRBT) are used to produce paths that avoid unobservable
regions of the statespace. There are two key differences
between these approaches and the one proposed here. First,
our knowledge of the goal position is limited to noisy angle
measurements. Second, our low SWAPC package requires
extremely computationally efficient solutions to enable real-
time operation. Others deal with the position uncertainty
associated with degraded GPS in urban environments directly
by detecting which GPS signals are affected by multipath or
blockage [8], [9], [10], [11]. These solutions often depend
on 3D city models to determine which regions of the
environment will provide poor GPS localization. Instead of
relying on maps, our approach seeks to determine locally
which directions of travel will lead to poor GPS localization,
thus greatly reducing the memory requirements.

Source-seeking and localization of RF emitters has been
a topic of extensive recent research. In [12], the motion
of a mobile robot is utilized to estimate the RSS gradient
by taking signal strength measurements at a sequence of
locations from an omni-directional antenna. This method

depends on the mobile robot to accurately know its position
relative to the starting point of the gradient measurement
and also relies on monotonicity and symmetry of the signal
strength decay as a function of distance between transmitter
and receiver which may be problematic in multi-path sce-
narios. In [13], a rotating directional antenna is mounted
on a wheeled mobile robot for the purpose of wireless
node localization. The RSS is measured as a function of
antenna angle and cross-correlation with a known antenna
gain pattern is used to determine the relative bearing between
an unknown radio source and the mobile robot. A particle
filter is used to determine the location of the unknown radio
source. A different approach to source-seeking that uses RSS
measurements from an omnidirectional antenna mounted
on a UAV to compute the spatial gradient is described in
[14]. The problems of frontier exploration and radio source-
seeking were addressed in [15] by using local RSS gradient
estimates to govern which frontier waypoint to approach. The
problem addressed in [16] is most similar to our application.
In that work the I-Bug algorithm, a variant of the Bug
algorithms introduced by Lumelsky and Stepanov [17], is
used to locate the source of a concave intensity function
in the presence of obstacles. Among the above mentioned
works, only [15] and [16] consider RF source seeking among
obstacles.

The remainder of this manuscript is organized as follows.
The Samarai MAV is described in Section II. Section III
presents an algorithm suitable for navigating in GPS de-
graded environments for the application of RF source seeking
with noisy angle of arrival measurements. A global recur-
rence property is shown for this algorithm in Section IV. The
results of simulations fed by experimental datasets as well as
a live flight experiment are discussed in Section V. Finally,
Section VI contains concluding remarks and a discussion of
ongoing and future work.

II. THE SAMARAI MICRO AIR VEHICLE

The UAS used in this paper is Lockheed Martin’s Samarai
- a maple seed inspired MAV (see [18], [19], [20] for addi-
tional discussion of design, aerodynamic analysis, modeling
and control; [21] for flight videos; and [4] for its use for
tracking an RF source). The Samarai MAV is a 30cm radius
single-wing wholly rotating air vehicle capable of vertical
takeoff/landing as well as autonomous flight using onboard
sensors packaged into an avionics pod, see Figure 2.

Motor/propeller

XBee Radio

Avionics Pod Antenna Trailing-edge

(Directional) Flap

Fig. 2. The Samarai MAV is equipped with an XBee radio and a conformal
antenna for seeking out and flying to an RF source as well as an avionics
pod that contains a suite of sensors for navigating in the urban environment.
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This vehicle design is simple, stable in hover, aerody-
namically efficient and has significantly lower wing loading
than conventional rotorcrafts, which reduces its power re-
quirement. The MAV is fitted with an XBee radio with a
custom designed directional antenna, and makes RSS and
orientation measurements 600 times a second as the MAV
rotates and translates. The conformal directional RF antenna
on the rotating wing is key towards solving the source-
seeking problem with low complexity: as the antenna rotates,
we can measure the signal power incident from different
directions. In a Line-of-Sight scenario, the direction in which
the RSS is maximal provides the bearing to the source.
While this observation forms the basis of our algorithm,
in practical settings modifications are necessary. In urban
areas where multipath is prevalent the received signal may
have significant measurement noise, leading to large errors
in the bearing estimate. To reduce such errors, we average
the variations in the RSS patterns over multiple rotations, for
brevity we refer the reader to [4] for further details.

III. ALGORITHM FOR NAVIGATING TO OPTIMIZE GPS
QUALITY

The bearing estimates typically fall into one of two cate-
gories: (a) they are roughly correct, with small errors that can
be attributed to the bin quantization and small measurement
noise or (b) they are outliers and have large errors, either due
to large measurement noise or because signals from reflected
paths distort the bearing estimate. As in [4] we utilize a first-
order model to capture these possibilities: we assume that
reasonably correct estimates occur with probability 1 — p
and outlier estimates occur with probability p.

In urban canyons, GPS localization quality can be de-
graded due to the lack of clear line of sight to a sufficient
number of GPS satellites. Our approach to this problem relies
on observing the GPS SNR in the direction of each satellite
and making inferences about directions of high GPS visibility
(allowable) and directions of low GPS visibility (forbidden).
The MAV source seeking algorithm uses this information
to constrain its path to only go in directions of high GPS
visibility.

Each time the GPS receiver reports a position update
to the MAYV, a triplet of satellite elevations, azimuths, and
SNR readings (O, ®,¥) are also provided for each satellite
detected by the receiver for that measurement. In order
to determine which directions are allowed, the algorithm
finds the minimum mean squared error solution between a
circular step-function and the normalized SNR values as a
function of ®. An example fit can be seen in Figure 3 where
directions with a value of 1 (high SNR) are allowable, while
directions with a value of 0 (low SNR) indicate the direction
of an obstacle and are hence forbidden. While the example
in Figure 3 shows SNR data from only 9 satellites, the
recent proliferation of satellite system deployments (Galileo,
GLONASS, BeiDou) suggests that in the near future GNSS
receivers will be capable of decoding signals from far more
visible satellites (> 40), thereby greatly increasing the
resolution of this measurement scheme.

4

Normalized SNR

e 7.

Orientation () 27

(a) The Minimum Mean Squared Error (MMSE) solution where a
value of 1 indicates a clear sky direction, and a value of O indicates
a direction of an obstacle.

Clear Sky

<— Obstructed Sky

(b) Resulting allowable and forbidden headings for the MAV.

Fig. 3.  An illustrative example of how allowable MAV headings are
computed from GPS SNR and Azimuth readings.

Let z = (x,y) € R? represent the position of the
MAV, ¢ € {1,2} denote the mode of the algorithm where
q = 1 represents stochastic source seeking mode and g = 2
represents the deterministic building avoidance mode. If no
nearby buildings are detected, the MAV will operate in a
source seeking mode (¢ = 1) according to the algorithm
developed in [4]. Suppose that, after the kth rotation, the
MAYV makes a bearing estimate vy, of an RF source according
to the following model:

Y = (1—0k)(9k+nk)+akw;€, Vk € Z>o, (1)

where 6;, denotes the true direction of the source after the
kth rotation, ny, is an independent and identically distributed
(i.i.d.) sequence of additive noise, wy, is a sequence of outlier
measurements (not necessarily independent), and o, € {0, 1}
an i.i.d. sequence of Bernoulli random variables with param-
eter p € [0,1). The event o}, = 1 corresponds to the sensor
producing an outlier measurement after the kth rotation, that
is unrelated to the true direction of the source.

Assuming the source is at the origin and the MAV is at
(zk,yr), the true source direction 6y, satisfies

k . Yk
—, sinf, = — .
| 2| |2 |
We assume that at each time step, the MAV moves in the

estimated source direction v for a fixed distance h. Thus,
the MAV’s position satisfies the recursive relationship

coS Yy,
2+ h {Sin ¢k]

F(, 2, 08), ()

cosl, = —

Rk+1
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where the first argument of f(1, 2y, ) refers to the mode
q=1.

However, if at any time the MAV detects that it is near
a building (using the measurement described in Figure 3),
it will switch to building avoidance mode ¢ = 2. In this
mode, we make use of the BUG 2 algorithm from [17].
This algorithm simply takes an acceptable local direction
around the building (in the direction of clear sky) until
the line in the direction of the last bearing measurement
prior to encountering the building is crossed (see Figure 4).
To determine this half plane crossing, the MAV needs to
remember its position before and after detecting the building.
At this point, the MAV moves along this line away from the
obstacle until the obstacle is no longer detected at which
point ¢ = 1 and source seeking mode resumes.

IV. ANALYTICAL RESULTS

Let A C R? be a compact set that represents the building.
The distance of the point z to the building is defined as
d(z) := inf e |2 —y|. We assume that the MAV detects the
building when it is in the region N'+DB = {z € R* : d(2) <
D} for some D > 0. Let D := max,, .,ean+DB) |21 — 22].
The state of the system (z, q) € R?x{1,2} and the dynamics
are represented by

Zkv1 = f(aw, 2k, Vi) (3)

where ¢ € R is a random input. The mode ¢ = 2
corresponds to the case where z € N 4+ DB and ¢ = 1
corresponds to the case where z € R?\ (N + DB). We do not
assume sufficient separation between the building and target
(located at the origin) since the analysis for the algorithm
involves establishing recurrence to a neighborhood of the
origin instead of asymptotic convergence. Let ({2, F,P) be
the underlying probability space. We also exclude the set A/
from the set of all possible initial conditions for the MAV.

Assumption 1: The deterministic algorithm used to get
around the building will complete in finite time [17], thus
it will leave the region N+ DB without entering A/ while
preserving the orientation of the MAV to remain sufficiently
close (within a small error related to step size) to the
direction in which it entered.

We analyze the combined recurrence and building avoid-
ance algorithm by sampling the state z € R? at random times
and we refer to the sampled state as z. To establish recurrence
to a neighborhood of the origin, we first prove recurrence
properties for the system represented by the sampled state Z
and then relate it to the original state z under certain technical
assumptions. We now consider a modified system with state
Z by considering the state z only when the state z is outside
N + DB, satisfying

Zk = 27 (k)

along all sample paths of the state (z,q) where the function
T'(k) is defined inductively as follows :

T(0) =0

T(k+1) = min {f >max{k+1,T(k)+1}:q = 1}.

The dependence of the function 7" on w € () is suppressed
and T'(0) = 0 since we only consider initial conditions for
the Z system that are outside the set '+ DB.

2105 %5

20, 20

Fig. 4. Sample paths of z and Z

The sequence {Z}kez., is non-empty for all k € Zxg
due to properties of the building avoidance algorithm and
Assumption 1. From the construction of the state z, we
observe that {Z}yez., is a subsequence of {z}rez., and
% € R2\(N + DB) for every k € Z>o. The dynamics of
the state z satisfies

Zip1 = f(Zk,n) 4

where f(z,9) = f(1,2,4) if f(1,%,9) € R2\(N + DB)
and f(Z,¢) = f(f(1,%,¢),2) if f(1,2,¢) € N + DB. The
mapping f : (N + DB) x R?\(N + DB) — R2\(NV + DB)
can be viewed as the combined action of the deterministic
building avoidance algorithm described by the one-step func-
tion f(2,-,-) and maps points to a region outside the sensing
range of the building.

We now relate the behavior of solutions of the systems
(3) and (4) under certain technical assumptions. We impose
these assumptions in order to make certain probabilities well
defined and to describe the behavior of solutions of systems
(3) and (4) in a probabilistic sense. The reader is referred to
[22] and [23] for details on random solutions to discrete-time
stochastic systems.

Assumption 2: The mapping f : (N + DB) x R2\ (N +
DB) — R?\(N + DB) is continuous.

Under Assumption 2, unique random solutions exist for
the system (4) from all initial conditions %y € R2\(N +
DB) and the proof follows the continuity properties of the
mapping f(1,-,-), f(-,-) and the induction arguments in [22,
Proposition 4].

We now relate the behavior of solutions of (4) to the
solutions of (3) under further technical assumptions which
imposes that the solutions of (3) be well defined.

Assumption 3: The mapping f defined in (3) is continuous
for ¢ = 2.
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It follows from (2) that the mapping (z,v) — f(1,z2,%)
is continuous. Then, if Assumption 3 holds, unique random
solutions exist for the system (3) from all initial conditions
20 € R? \N .

Lemma 1: Under Assumptions 1-3, if an open, bounded
set O C R? is globally recurrent for (4) then it is also
globally recurrent for (3).

Proof. Since O C R? is recurrent for (4), it implies that
P(w o€ Z>0,2i(w) S O) =1 VzZ € R2\(O U
(N + DB)). From the construction of (4), it follows that
P(w : 3j € Zso,zj(w) € O) = 1 for all solutions of (3)
starting from zy € R?\(OU (N + DB)). In order to establish
recurrence to O from points in the set (N + DB)\N for
(3), we note from Assumption 1 that solutions starting from
(N + DB)\\ reach the set R?\ (N + DB) surely and hence
recurrence of O follows for (3) from all initial conditions
outside the set . n

Assumption 4: Let op,m, and wy be ii.d random se-
quences satisfying E[coswy] = E[sinwy] = E[sinng] = 0
and E[cosng] =n > 0 for all k € Z>o.

Theorem 1: Under Assumptions 1-4 the open, bounded
set

(D + 2h)2 + h?
}, ®)

O:={zeR?:|z| <
{ & 2(1=p)n

is globally recurrent for (3).

Proof. We begin by establishing recurrence of O for (4)
using a proof structure similar to [4, Lemma 1]. Analysis
of the sampled state Z requires considering two cases with
initial conditions constrained to R?\(O U (N + DB)). The
first case corresponds to the situation when the dynamics for
the next step Zxy1 is represented by f(1,Zg, ) wherein
Zr4+1 1s at a distance of h from Z; in the direction of
Y = (1—o0%) (0 +n) +0orwy. The second case corresponds
to the situation when 2, = f(fA(l,Zk,z/Jk),ék) wherein
Zr+1 1s at a distance of at most D + 2h from Zzj in the
direction of ¢, = (1 — ok)(Ox + i + @) + or(wi + ¢),
where upon leaving the region NV -+ DB the orientation of the
MAYV will have a worst-case error of ¢ when compared to the
orientation when it entered the region. This orientation error
of ¢ can occur due to the MAV overshooting the half plane
by a distance of at most h before completing the building
avoidance algorithm, thus

D +2h
(D + 2h)? + h?

cos(9) =

Define the Lyapunov function candidate V'(2) := o|Z|*. We
now analyze (4) with the worst-case step size of D + 2h. It
follows from the proof of [4, Lemma 1] that

E[V(Zkﬂ) Zn)|Z]
alel(D+2h)(
—20/|7,(D + 2h)(1 —

P)E[cos(ni + )] + a(D + 2h)*
p)ncos(¢) + a(D + 2h)>.

Setting a = 1/(D + 2h)? we have

E[V(Zk41) — V(Z1)|2k] < —p(|2k]) +To,0(12k])  (6)

where Iy o) (r) is the indicator function taking the value 1
: D+
when 0 < r < ¢ and 0 otherwise, € > m, and p:

R>9 — R satisfies p(s) = 25(D + 2h)~1(1 — p)ncos(¢)
when s < ¢ and p(s) = 2s(D+2h) " (1—p)n cos(¢)—1 oth-
erwise. Since V is radially unbounded and locally bounded,
it follows from [24] that V' is a Lyapunov function that
establishes global recurrence of the set O for (4). Then, from
Lemma 1 it follows that the set O is recurrent for (3). m

V. NUMERICAL RESULTS AND FLIGHT EXPERIMENTS

The algorithm described in Section III was validated with
numerical simulations in an environment containing a large
building developed from experimental data. This algorithm
provides the MAV heading commands while its speed and
height commands are determined using its own baseline
guidance and control system. A large amount of experimental
GPS satellite data (©,®,%) was collected over a large
area of free, partially occluded, and fully occluded space.
Gross SNR, azimuth, elevation, and satellite ID values were
collected for all visible satellites along a lawnmower path
surrounding a building, see Figure 5. This information stored
and used to produce GPS SNR measurements for simulations
of the algorithm described in Section III. An example trajec-
tory of the MAV is shown in Figure 6. Here the MAV (starting
at green X) is seeking a stationary beacon (shown as red X).
The MAV starts in source seeking mode (¢ = 1), and as the
MAV approaches the building (magenta circle), the latter is
detected from a drop in the GPS SNR values. The MAV then
switches to operate in building avoidance mode (¢ = 2) until
it crosses the half plane (magenta dashed line) defined by the
last heading angle before detecting the building. The MAV
then switches back to source seeking mode (¢ = 1) (second
magenta circle) until the source is reached. The average GPS
SNR measurements for this trajectory are shown in Figure 7.

As discussed in Section III, a key attraction of the pro-
posed approach is the fact that it is simple and straight-
forward to implement onboard the gumstix processor on
the MAV. When the source is not located in a maze type
corridor, an even simpler form of the algorithm can be used.
In the implementation of this algorithm, the MAV goes in the
direction of the latest AOA measurement unless that direction
is toward obstructed sky and thus forbidden according to
Figure 3(b). In this case the MAV turns away from the
building to seek out higher SNR satellites. This simplified
Bug algorithm avoids the need for memory elements and the
resulting paths are shorter due to the MAV only needing to go
around the corner of the building before the AOA direction
lies within clear sky again. To validate the performance of the
algorithm in flight, we carried out experiments in an outdoor
environment with virtual structures inserted to represent tall
buildings that would interfere with the reception of GPS
signals. The presence of these structures had the effect of
degrading the quality of signals from all GPS satellites that
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Latitude [deg]

-75.053

-75.052 -75.051
Longitude [deg]

-75.050 -75.049

Fig. 5. The numerical simulations were based on experimental data
collected by forming a GPS SNR profile of the environment around a
building and storing this together with associated azimuth, elevation and
satellite ID information to a look-up table. Here the colormap refers to an
averaged Horizontal Dilution of Precision (HDOP) measure.

met the occlusion conditions depicted in Figure 1. The goal
of the flight experiment was to fly to the RF source along
a GPS-Optimal path for this specific environment. Screen
captures of the ground control station (GCS) display for the
flight experiment are shown in Figure 8.

In Figure 8(a), the algorithm computes a desired heading
that corresponds to the closest direction of GPS LOS to the
RF line of bearing to the source. This causes the MAV to
actually fly at an acute angle to the line of bearing between
the start point and the beacon, increasing the number of
visible high SNR satellites (Figure 8(b)). As the MAV finally
turns to the RF source in Figure 8(c), essentially all the
satellites used to compute its nav solution are high SNR
satellites, indicating that the MAV showed a preference for
a flight path that kept GPS quality high, even though this was
not the shortest path to the goal. The MAV’s actual flighpath
is shown in Figure 9, where the experiment concludes when
the MAV reaches the beacon. Because the algorithm seeks
out high SNR GPS satellites while keeping the MAV close
to the RF-based line of bearing to the beacon, the net effect
is that both received signal strength from the RF Beacon
and GPS SNR are kept high in this approach (Figure 10 and
Figure 11 respectively).

VI. CONCLUDING REMARKS

In this paper, we have described an algorithm for enabling
a MAV to track an RF source in a degraded GPS environment
by guiding the MAV along flight paths for which the received
signal strength from the RF source is maximized while
maintaining a high GPS signal-to-noise ratio. To optimize
signal strength to the source, the MAV exploits its rotation
to estimate the direction of the signal which it then attempts
to follow. To maintain high GPS quality, for all satellites
in view we use SNR, azimuth and elevation information to
determine desirable directions of travel that avoid areas with

Northing [m]

—200 -150 —100 -50 © 50 100 150 200 250
Easting [m]

s

Fig. 6. The MAV locates a stationary RF beacon on the lower left of the
building. By flying only along paths of high GPS SNR, rather than solely
along the AOA to the beacon, the MAV is able to avoid the building without
the use of an explicit obstacle avoidance sensor.
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Fig. 7. The variation in average GPS SNR as seen by the GPS receiver

on the MAV as it seeks a static RF source.

NLOS conditions. By balancing flight along paths that keep
the most number of high SNR satellites visible with the need
to fly along the AOA to the source, the MAV continuously
improves its view of satellites with the highest SNR while
navigating through the environment. Because the approach
uses only data that can be extracted by the GPS receivers
ubiquitous on almost every MAYV, it offers the promise of
a low SWAPC approach for enabling MAVs operate in
GPS degraded environments as well as a virtual obstacle
avoidance sensor for long range path planning on MAVs. The
algorithm was successfully implemented onboard a MAV and
demonstrated in flight experiments. As future work, we will
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extend the technique to also command the height of the MAV.
We will also investigate the use of multiple MAVs as aiding
sources for the localization of individuals operating in the
environments.
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Fig. 8. GCS screen shots of the MAV’s Ground Control Station during
the flight experiments. At the start of the experiment (a), the GPS satellite
configuration is such that line of bearing to the RF source requires the MAV
to fly along paths where low SNR satellites (red dots) would be used for
nav fix. Midway through the experiment (b), the MAV has flown closer to
the RF source along a path that increased LOS to high SNR GPS satellites
(white dots). At the end of the experiment (c), the MAV turns to fly to
the source after flying a route that kept it away from the structure in the
environment. Most satellites used for nav fix at this point have high SNR.
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Fig. 9. The MAV’s 3D flightpath during the experiment.
’//'

3000 :‘\)‘rf L '(r
/ \|

2500

H

1000 | il

100 10 120 130 140 150 160 170 180
Time (s)

Fig. 10.  Variation of RSS from the beacon as the MAV flies in the
environment. Apart from a few instances of apparent packet dropout, RSS
was high for the majority of the experiment
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Fig. 11. Average SNR of the satellites used in the MAV’s nav fix. While the
specific composition of the satellites changed during the flight, the algorithm
steered the MAV in directions that enabled the overall SNR to remain high
throughout the experiment
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