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Optimal Sensor Placement For Time Difference of Arrival Localization

Jason T. Isaacs, Daniel J. Klein, Jodo P. Hespanha

Abstract— This paper addresses the problem of localizing a
source from noisy time-of-arrival measurements. In particular,
we are interested in the optimal placement of A/ planar sensors
so as to yield the best expected source location estimate. The
main result, on maximizing the expected determinant of the
Fisher information matrix for truncated, radially-symmetric
source distributions, shows two features not previously ob-
served. First, the sensors should be placed as far from the
expected source position as possible. Second, the sensors should
be arranged in a splay configuration in which neighboring
sensors are separated by equal angle increments. Specific
examples are given for point, uniform, and truncated-Gaussian
source density functions.

I. INTRODUCTION

In the time-of-arrival (TOA) source localization problem,
acoustic or electro-magnetic radiation emitted by a source is
received by many spatially distributed sensors. Each sensor
records the time at which the signal arrives and relays this
information to a fusion center. Using these measurements
in conjunction with the known position of each sensor,
a centralized algorithm can estimate the source location
and event time. Source localization has a wide range of
both civilian and military applications including speaker
identification in a conference room [1], [2], cell-phone geo-
location [3], and sniper and mortar localization [4].

A key question that arises in the source localization prob-
lem is where to place the sensors. Answering this question
amounts to finding sensor arrangements that provide the most
valuable information to any particular unbiased localization
algorithm. The localization algorithm performance is typi-
cally characterized by the Cramer-Rao lower bound (CRB)
on the estimator variance, or by the Fisher information matrix
(FIM). The CRB is the inverse of the FIM, and thus exists
only when the FIM is non-singular.

A good sensor configuration results in a large FIM, or a
small CRB. The size of these matrices can be measured by
either the trace or the determinant. Physically, the trace of the
CRB corresponds to the lower bound on the mean squared
error of an unbiased estimate. The determinant of the CRB
matrix is proportional to the lower bound on the volume of
the uncertainty ellipse associated with an unbiased estimate.
Here, we work with the determinant of the Fisher information
matrix which is inveresly proportional to the determinant of
the CRB matrix.
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Fig. 1. A collection of six sensors is shown in an optimal configuration
to localize a source distributed according to a truncated-Gaussian density
function. The optimal configuration places the sensors at the boundary of
the permissible region, indicated by the dashed circle, and at equal angle
increments.

A majority of the previous work on optimal sensor place-
ment considers the problem of placing sensors for a known
source location. Necessary and sufficient conditions have
been found for maximizing the FIM determinant [5], and
sufficient conditions are known for minimizing the CRB trace
[6]-[8]. In these results, the critical factor is the relative
angles between the sensors. The distance between each
sensor and the source is irrelevant because neither the CRB
nor FIM depend on source-to-sensor distance.

Only in recent work has the optimal sensor placement
problem been considered in the context of an uncertain
source location. In [9], numerical optimization techniques
were used to minimize the expected CRB determinant. The
examples discussed suggest that optimal sensor configura-
tions have sensors spread out along the boundary of the
surveillance area. In [10], a single source is allowed to
move within the surveillance area while the sensors move
to optimal configurations along the boundary of the region.

We provide solutions to the optimal sensor placement
problem for an uncertain source location, using the expected
value of the FIM determinant as an optimality criteria. In
particular, results are derived for truncated, radially sym-
metric source distributions when the sensors are confined to
either a ring, or an annular region. Through a combination of
analysis and simulation, we find two new results for the case
of an unknown source location. First, the distance between
the sensors and the expected source position matters and
should be made as large as physically possible. Second,
splay configurations like the one depicted in Fig. 1, in which
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sensors are arranged at equal angle increments, are better
than other configurations suggested in the known-source
literature.

This paper is organized as follows. In Section II, the
problem of source localization from TDOA measurements
is described. The main results concerning optimal sensor
placement are presented in Section III. In Section IV, numer-
ical results are given to support the analytical work. Optimal
sensor geometries for point source, uniform, and truncated-
Gaussian distributions are discussed. Conclusions and future
directions are discussed in Section V.

II. TDOA SOURCE LOCALIZATION

In this section, we formulate the source localization
problem, describe how time-of-arrival measurements are
generated, and introduce the Fisher information matrix and
Cramer-Rao bound. Symmetric sensor configurations are also
introduced.

A. The Source Localization Problem

The main elements of a source localization problem are
a single source, located at a point p € R2, and M sensors
located at points q := [q1,qs,...,qy] € R2*M. At an
unspecified event time t(, the source emits an acoustic or
electro-magnetic signal which propagates outward at speed
v. Each sensor records the time at which the signal arrives,
a measurement called the time of arrival (TOA). The main
objective of source localization is to infer the source location
from the TOA measurements.

The noisy TOA measurement of sensor ¢ is modeled as:

14

t; =10 + + €, (1)

where

is the distance between the source and the sensor. The noise,
€;, 18 assumed to be a zero-mean Gaussian random variable
with variance o2.

The emission time ty can be eliminated by taking dif-
ferences between TOA measurements. The resulting time-
difference-of-arrival (TDOA) measurements can be written
as:

. |

tij =1t —t; = ;dij(pvQ) + €55, 3)
where

dij(p,q) := di(p,q) — dj(p,q) “4)

is the difference in source-sensor distance between sensors %
and j. The noise difference, €;; := €; — €;, has variance 202,

A maximum of (M — 1) linearly independent TDOA
measurements can be found for M sensors. Without loss
of generality, all time of arrival differences can be taken
with respect to the first sensor to generate the following
(M —1) x 1 vectors:

f(I)»q) = [ tin ](i:Q ..... M)’ ©®)
d(p,q):= [ da }(i:?,.“,kf)’ ©)
€ .= [ €i1 ](1':2,...,M) : @
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The TDOA vector, (5), has mean
1

14

t(p,q) ;= E [t| = =d(p,q) (8)

and the (M — 1 x M — 1) covariance matrix is defined as
Q=B [t~ (-7 ]
=0’ [I+117], ©)
where 1:=[1 1 .. 1]".

B. The Fisher Information Matrix and Cramer-Rao Bound

The Cramer-Rao bound (CRB) provides a lower bound
on the variance of an unbiased estimator and is defined as
the inverse of the Fisher information matrix. The Fisher
information matrix F(p,q) associated with the estimation
of the source location p is computed as [11]:

(5 msm)) <§plnf<f|p>)T] - (10)

where f(t|p) is the PDF of t given p. Assuming the noise
vector € is zero mean Gaussian and independent of p, then
f(t|p) is the PDF of a Gaussian random variable with mean
t(p) and covariance matrix Q,

f(tlp) = N (t;t(p). Q) . (11)

This leads to the (2 x 2) Fisher information matrix given by
Chan and Ho [12],

F(p,q)=F

1 _
F(p,a) = 5G"Q7'G, (12)
where . T
g2 — 81
G = : (13)
T T
8v — 81 1 (am—1x2)
and
gi= b (14)
Ip — aill

The Cramer-Rao lower bound is defined as the inverse of
the Fisher information matrix, CR.(p,q) = F(p,q)~1, and
is thus defined only when F(p, q) is full-rank. The matrix
CR(p,q) is a lower bound on the estimation error in the
sense that, if X is the covariance of an unbiased estimator
of p, then ¥ — CR(p,q) is positive semi-definite. It is
important to note that the matrices F(p,q) and CR(p,q)
depend significantly on the relative geometry of the source,
p, and the sensors, q. For the remainder of the paper, the
dependence of F and CR on p and q is implicitly assumed.

C. Known Source Optimal Sensor Placement

Much recent work has focused on the problem of placing
sensors relative to a known source location. Without loss
of generality, the source can be placed at the origin. Then,
denoting by 6; the angle of g;, globally optimal sensor
configurations for maximization of the Fisher determinant
satisfy (Theorem 1 in [5]) the following two conditions:
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First moment balanced:

1 & 1 &
0=+ ;cos(ﬁi) i ;sm(ﬁi). (15)
Second moment balanced:
1 M 1 M
0=+ > cos(20;) = i Zsm(zai). (16)

i=1 i=1

The first moment condition is met when the sensors are
spread about the source in an average sense. The second
moment criteria ensures that the Fisher information matrix
will have equal eigenvalues, resulting in a confidence ellipse
that is circular. All configurations satisfying these conditions
have a determinant of the Fisher information matrix equal
to M?/40%. Notice that when the source location is
known, the determinant of the Fisher information matrix is
independent of source to sensor distance.

D. Symmetric Sensor Configurations

When the source location is uncertain, symmetric sensor
configurations play an important role.
Definition 2.1 (Symmetric Configuration): A

configuration is said to be symmetric if for every
i € {l,...,M}, there is an invertible mapping
Fi: (L., M)— (1,..., M) such that
T
qi9;
ar.() — {2”(1.”2 - I} q;- (17)

Put more simply, a configuration is symmetric when
every unit vector g, pointing from sensor q; to the source
location p defines an axis of reflective symmetry. Symmetric
configurations need not to be second moment balanced, and
vice versa second moment balanced configurations need not
be symmetric, as demonstrated in Fig. 2. Another important
distinction is that symmetry is distance sensitive, whereas
second moment balancing only depends on relative angles.

(a) Second moment balanced (b) Symmetric

Fig. 2. Both of these sensor configurations are first moment balanced in the
sense that (15) holds, however (a) shows M = 7 sensors in a configuration
that is second moment balanced, but not symmetric whereas (b) shows M =
6 sensors in a configuration that is symmetric, but not second moment
balanced.

III. OPTIMAL SENSOR PLACEMENT

In this section, we solve the optimal sensor placement
problem for truncated, radially symmetric source distribu-
tions with a given constraint on the distance from each
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sensor to the expected source position. At first, we require
all sensors to be located at a distance r from the expected
source position. Later, we relax this constraint and instead
allow sensors anywhere within an annulus of radii 71 < 7
about the expected source position. The problem we seek to
solve can be formally stated as follows.

Problem 3.1: Given M sensors, a radial region D C R?,
and a radially symmetric probability density function ¢(||p||)
for the source position p € P C [R?, find the sensor locations
q; € D for : =1, ..., M that maximize the expected value
of the determinant of the Fisher information matrix,

a' —argmax [ @a®o(ly  (19)
qeD P
Without loss of generality we assume that the expected
location of the source is at the origin.

Our first main result considers sensors at a fixed distance
from the expected source location.

Theorem 3.2 (Fixed Distance Sensor Placement):
Assume in Problem 3.1 that the region D is a ring of radius
r, centered at the origin so that

qe DM, D, = {xeR¥xTx =1}, (19)

and the support of the PDF is a disk with radius smaller than
7 so that

peP, Pi={xeRx"x <r’}. (20)

Then, sensor configurations that are both balanced (15) and
symmetric (17) satisfy the first order necessary conditions
for optimality.

Before stating the proof of Theorem 3.2, we provide a
lemma which allows the determinant of the Fisher informa-
tion matrix to be written in a symmetric manner.

Lemma 3.3: The Fisher information matrix (12) for time-
of-arrival measurement differences can be expressed as:

M
1 _
F= 522 E gz‘giT - Mgg" |, (21
i=1

and the determinant of (21) is given by

M M

1 _ _

det(F) = ey Zglzx - Mg, Zglzy — Mg;
1=1 i=1

2

M
D 9109y — Maagy | |, (22)
1=1
where g, defined by
1 M
gi= 7 ;g (23)

is the average of the g, vectors. A proof of Lemma 3.3 is
available in the Appendix.

We are now ready to give the proof of the first theorem.
Proof: (of Theorem 3.2) We begin by forming the Lagrangian
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of (18),
M
o(llplhdp + > pi (af @i —17)

/ det (F
=1
(24)

where p € RM is a vector of Lagrange multipliers. A point
q* satisfies the Karush-Kuhn-Tucker (KKT) [13] first order
necessary optimality conditions for this Lagrangian if there
exists a vector u* € RM such that:

*T* 2

O=q"qf —r* Vie{l,2,..,M} (25)
M
0= | [ aet®otlohap+ Y u; (a7 a; %) |
7‘ j=1
(26)
where V denotes the differential operator
0
V= { } . 27
99; (i=1,...,M)
Condition (26) can be written for each ¢ as:
5 det (F
= [ S ol e
After some algebra, we find using Lemma 3.3 that
OdetF 2 i
= g/F g ; (29)
dq; Ip—all™ (&:-8)e
where the perpendicular operator L is defined by
xt = [(1) _01] x, VxeR% (30)

Symmetric configurations, from Definition 2.1, play an
important role in the integral in (28). To see the symmetry,
consider a coordinate rotation in which the i*" sensor, q;, is
placed on the positive x-axis. Then take two source points,
p and p, for which p is p mirrored about the x-axis,

p = Rp, (31)
where R is the elementary reflector about the x-axis defined
as:

1 0
R {0 _J | (32)
Some algebra reveals
det F det F
Odde ‘ _pdde ’ (33)
9q; I(p.a) 9q; l(p.a)

To show the optimality of the i*" sensor (which now lies
on the z-axis), we employ (31) to split the integral in (28)
into two parts. When integrating over points not on the x-
axis, for every p there exists a p for which the sum of the
two integrands have equal and opposite y-components and
equal z-components.

0 / / OdetF
det F dp =
oar o, detFollplar = | == opldp

ad L F
+/ 1+R] S5
Pt

¢(llpldp
(34)
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In the first part, integrated over Py C P,, p lies on the z-
axis and in the second part, integrated over P, C P,, p has
a positive y-component. Integrating over Py is trivially zero
because the integrand is zero at all points p € Py due to
the symmetry of the configuration. Notice that in (34) the
y-component cancels because

I+R{2 O], 35)

0 0
indicating that the right hand side of (28) is aligned with q;.
Thus, we conclude that there exists a multiplier,

/ al [1 o] ddetF
S PR )
for each ¢ so that the optimality conditions are satisfied. W

We next consider a generalization of Theorem 3.2 in which
the sensors are confined to an annulus of radii r; < 79
instead of an r-radius ring, but first we introduce a particular
symmetric configuration that will be used throughout the
remainder of this paper.

Definition 3.4 (Splay Configuration): A symmetric con-
figuration is said to be splay if

¢(llplhdp,  (36)

0; —0; = —, foreach j =14+ 1, (37
where 6; is the angle of the vector q; with respect to the
X-axis.

Theorem 3.5 (Variable Distance Sensor Placement):
Assume in Problem 3.1 that the region D is an annulus of
radii r; < ro, centered at the origin,

quéw, Da::{xER2|r <x x<7‘2} (38)
and the probability density function is truncated at a radius
less than 71 so that

pEPa Poi={xeRx"x<ri}. (39)
Then, sensor configurations on the outer boundary of the
annulus,
T, _ .2 :
q; qi = T, VZE{1,2,...,M}, (40)
that are additionally splay (37) satisfy the first order neces-
sary optimality conditions.

Proof: (of Theorem 3.5) The Lagrangian for (18) with

the inequality constraints (38) is now

M
L(q, 1, A /da o(lpdp+ 3 i (72 — o)
=1
M
+> Ai(af'a —13) (41)

i=1

where p € RM and A € RM, are vectors of Lagrange
multipliers. The KKT first order necessary conditions for
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Fig. 3. The integrand of (50) is plotted for p inside a disk of radius
r1 = 900 with M = 4 sensors placed in a splay configuration at radius
ro = 1000. The important thing to note here is that the integral will be
positive even though the integrand is negative for some p. A nonlinear
scaling has been applied to the colormap to show details for negative values
of the integrand.

optimality are now Vi € {1,2,..., M}:
0> —q;"q (42)
0< ,ui (43)
0=p; (7“1 q"q)) (44)
0>q;"q; — 73 (45)
0<AF (46)
0=\ (af"a; —r3) (47)
0=VL(q,p ). (48)

Here, the first six relationships are complementary slackness
conditions to ensure that sensors remain in D,. Because
the sensor configuration in which we are interested have all
sensors at the outer radius ro of D, (40), u; = 0, Vi €
1,..., M, the relationship (48) is identical to (26) from the
fixed radius problem. Thus we have already shown that
symmetric, and hence splay, configurations satisfy (48) in
the proof of Theorem 3.2.

What remains to be shown is that all M Lagrange multi-
pliers, \;, ¢ = 1, ..., M have positive sign (46). Using (29),
(48) becomes

2
0:/ 8 Fgi — 8"
P, Ip—ail ™

To show that each Lagrange multiplier is positive, we solve
for \; and write the integration in polar coordinates,

gi-¢(llpll)dp + 2Xiq;.
(49)

T1 27

/ / Ip— qunq o allaES Fle — ) als dood(p)odp.
(50)
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Fig. 4. The inner integral in (50) is plotted vs the radius p of p for M
sensors placed in a splay configuration at a radius r2 = 1000. For all p, the
inner integral evaluates to a positive number indicating that A; is positive.
As p approaches zero the distibution looks more like a point mass, thus the
inner integral approaches zero.

where p = pZpy. Because the radially symmetric density
function ¢(p) is non-negative, we need only to show that
the inner integral is positive for every p. Unfortunately, the
integrand in (50) does not have constant sign, see Fig. 3 for
example. Because a closed form computation of the integral
appears to be intractable, we refer the reader to Fig. 4, which
shows the inner integral plotted against p for various M in
a splay configuration.

|

I'V. NUMERICAL RESULTS

In this section we include two numerical results that
support Theorem 3.5 and motivate a conjecture that is left for
future research. In the first, we study the splay configuration
found in Theorem 3.5 and evaluate how the expected Fisher
determinant varies with the outer radius r,. In the second,
we evaluate the expected Fisher determinant for a subset of
configurations found in Theorem 3.2.

A. Expected Fisher Determinant Maximum at the Boundary

In Theorem 3.5 we have shown that if the region confining
the sensors D, is an annulus of radius r{ < rs, centered
at the expected location of the source, then sensors placed
at the boundary of the region D, in a splay configuration
meet the first order necessary conditions for optimality. The
purpose of this section is to examine how the expected Fisher
determinant changes with the outer radius of the boundary.
In Fig. 5 it can be seen that the expected Fisher determinant
increases monontonically with 7o for both uniform and
truncated-Gaussian distributions. This observation supports
Theorem 3.5 in that if sensors are in a splay configuration
about the expected source location, then it is beneficial for
all the sensors to move out radially.
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Fig. 5. The expected value of the Fisher information determinant as a
function of outer radius r2 of region D, for M = 6 sensors in splay
configuration.

B. Splay Configuration Maximizes Fisher Determinant on
Ring

The result of Theorem 3.2 states that any balanced and
symmetric configuration meets the necessary conditions of
first order optimality. However, the configurations with sen-
sors at equal angle increments seem to yield higher expected
Fisher determinants than other configurations satisfying the
balancing and symmetry conditions.

Conjecture 4.1 (Splay Conjecture): Of all the balanced
and symmetric configurations satisfying the first order nec-
essary conditions in Theorem 3.2, splay configurations, from
Definition 3.4, give the largest expected Fisher determinant.

Consider the case where M = 6, starting in the splay
configuration for which (15), (16), and (37) are all satisfied.
If we hold the position of three of the even ordered sensors
constant while rotating the odd ordered three sensors about
the origin by a € [0 4w /M], then (15) and (16) remain
satisfied, but the symmetry conditions (17) are only satisfied
when oo = 0, o = 2w /M, and o = 47 /M. This rotation by «
takes the configurations from an M = 6 splay configuration
through the point where there are two sensors at each location
of a M = 3 splay configuration and back to a M = 6
splay configuration again. All of these configurations meet
the optimality conditions for a known source at the origin
[?], but only o = 0, o = 2x /M, and « = 4 /M satisfy the
symmetry conditions required by Theorem 3.2. The results
in Fig. 6 show that the splay configuration at & = 0 and
o = 47 /M achieve the maximum expected determinant of
FIM for both uniform and truncated-Gaussian distributions
while the repeated configuration at o = 2w /M does not.

V. CONCLUSIONS

The work in this paper has addressed the optimal sensor
placement problem considering a source node distributed ac-
cording to a truncated radially-symmetric probability density
function. The results suggest that good sensor configurations
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Fig. 6. 1In (a) the expected value of the Fisher information determinant is
plotted as a function of rotation angle « between two sets of M = 6 first
order optimal configurations. When @ = 27 /M the sensors are arranged
in a configuration of duplicate sensors in a M = 3 splay configuration
which satifies the first order necessary conditions in Theorem 3.5, but does
not maximize the expected Fisher determinant. In (b) the M = 3 blue
sensors are shown rotated by angle « while the M = 3 red sensors are
held stationary.

are both balanced and symmetric. Overall, the results show
that the distance between the source and the sensor is
influential, and that splay configurations are better than other
ones. These results are new and were not apparent in previous
work that considered a known source location.

There are many directions in which this work could be
extended. First, both Theorems 3.2 and 3.5 should be ex-
tended to include any radially symmetric source distribution
that may extend outside the area where sensors may be
placed. Also, further analytical results could be provided
regarding the advantage of splay states over other symmetric
and balanced states.

In another direction, the radial symmetry of the source
distribution should be relaxed. In an urban environment,
the source distribution is unlikely to be radially symmetric.
Further, sensor constraints other than a ring or annulus could
be considered.

APPENDIX
A. PROOF OF LEMMA 3.3

Proof: (of Lemma 3.3) By induction, beginning with
(12) for M = 3,

1 _
| ﬁGTQ ye (51)
1 1 gT _ gT
= [go— — I— 2117 |22 &
022 [gz g1 83 g1] { 3 } {ggT—ng
(52)
1 5 1\ < 1
_ T T
~ g | See -3(3) Le () L
i=1 i=1 Jj=1
(53)
1 3
= 527 Zgig;'r —3gg’ (54)
i=1
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Assuming the lemma holds for M,

1 -
Fur = —5GLQy Gu (55)
1 M
_ oT _ 55T
=== ;gzgi Mgg” |, (56)
we examine M + 1 letting I' = ﬁ and dropping v and o
for brevity,
-1 r T
1 Q) + (3) L1l Ty,
Qo1 = { -t rMm 7
Fua =[G o G 58
vi1 =[Gl 8u11—81)Qua |r | (58)
Brv+1 ~ 81

I
=Fu + MGﬂlM—llg/[flG]VI

~ TG 1n-1(8hr1 — 81 )
—T(gm+1 — 81)1y Gy
+TM(grr1 — gl)(gﬂﬂ —g1)
=Fu +TM (8y — 8ar+1) (8n — 8ur1)

M
=Y gl +eungi — T [Mgngl,
i=1
+gM+1g£4+1 + MgMgﬂH + MgM+1g£4]
M+1

=) gl
1=1

T [(Mgar + garen) (Mew +garin)" |
M+1

> gigl — (M +1) [8r18h14] -

i=1

The determinant of the Fisher information matrix (22)
follows directly from the symmetric form of the Fisher
information matrix (21),

[1]

[2]

[3]

[4]

[5]

M
1
det (F) = —det > gigl — Mgg” (59)
=1
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