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sensors are arranged at equal angle increments, are better

than other configurations suggested in the known-source

literature.

This paper is organized as follows. In Section II, the

problem of source localization from TDOA measurements

is described. The main results concerning optimal sensor

placement are presented in Section III. In Section IV, numer-

ical results are given to support the analytical work. Optimal

sensor geometries for point source, uniform, and truncated-

Gaussian distributions are discussed. Conclusions and future

directions are discussed in Section V.

II. TDOA SOURCE LOCALIZATION

In this section, we formulate the source localization

problem, describe how time-of-arrival measurements are

generated, and introduce the Fisher information matrix and

Cramer-Rao bound. Symmetric sensor configurations are also

introduced.

A. The Source Localization Problem

The main elements of a source localization problem are

a single source, located at a point p ∈ R
2, and M sensors

located at points q := [q1,q2, . . . ,qM ] ∈ R
2×M . At an

unspecified event time t0, the source emits an acoustic or

electro-magnetic signal which propagates outward at speed

ν. Each sensor records the time at which the signal arrives,

a measurement called the time of arrival (TOA). The main

objective of source localization is to infer the source location

from the TOA measurements.

The noisy TOA measurement of sensor i is modeled as:

t̂i = t0 +
di(p,q)

ν
+ ǫi, (1)

where

di(p,q) := ‖p − qi‖, i = 1, ...,M (2)

is the distance between the source and the sensor. The noise,

ǫi, is assumed to be a zero-mean Gaussian random variable

with variance σ2.

The emission time t0 can be eliminated by taking dif-

ferences between TOA measurements. The resulting time-

difference-of-arrival (TDOA) measurements can be written

as:

t̂ij := t̂i − t̂j =
1

ν
dij(p,q) + ǫij , (3)

where

dij(p,q) := di(p,q) − dj(p,q) (4)

is the difference in source-sensor distance between sensors i

and j. The noise difference, ǫij := ǫi− ǫj , has variance 2σ2.

A maximum of (M − 1) linearly independent TDOA

measurements can be found for M sensors. Without loss

of generality, all time of arrival differences can be taken

with respect to the first sensor to generate the following

(M − 1) × 1 vectors:

t̂(p,q) :=
[

t̂i1
]

(i=2,...,M)
, (5)

d(p,q) :=
[

di1

]

(i=2,...,M)
, (6)

ǫ :=
[

ǫi1

]

(i=2,...,M)
. (7)

The TDOA vector, (5), has mean

t̄(p,q) := E
[

t̂
]

=
1

ν
d(p,q) (8)

and the (M − 1 × M − 1) covariance matrix is defined as

Q := E
[

(

t̂ − t̄
) (

t̂ − t̄
)T
]

= σ2
[

I + 11T
]

, (9)

where 1 :=
[

1 1 ... 1
]T

.

B. The Fisher Information Matrix and Cramer-Rao Bound

The Cramer-Rao bound (CRB) provides a lower bound

on the variance of an unbiased estimator and is defined as

the inverse of the Fisher information matrix. The Fisher

information matrix F(p,q) associated with the estimation

of the source location p is computed as [11]:

F(p,q) = E

[

(

∂

∂p
ln f(t̂|p)

)(

∂

∂p
ln f(t̂|p)

)T
]

, (10)

where f(t̂|p) is the PDF of t̂ given p. Assuming the noise

vector ǫ is zero mean Gaussian and independent of p, then

f(t̂|p) is the PDF of a Gaussian random variable with mean

t̄(p) and covariance matrix Q,

f(t̂|p) = N
(

t̂; t̄(p),Q
)

. (11)

This leads to the (2× 2) Fisher information matrix given by

Chan and Ho [12],

F(p,q) =
1

ν2
GT Q−1G, (12)

where

G :=







gT
2 − gT

1
...

gT
M − gT

1







(M−1×2)

(13)

and

gi :=
p − qi

‖p − qi‖
. (14)

The Cramer-Rao lower bound is defined as the inverse of

the Fisher information matrix, CR(p,q) = F(p,q)−1, and

is thus defined only when F(p,q) is full-rank. The matrix

CR(p,q) is a lower bound on the estimation error in the

sense that, if Σ is the covariance of an unbiased estimator

of p, then Σ − CR(p,q) is positive semi-definite. It is

important to note that the matrices F(p,q) and CR(p,q)
depend significantly on the relative geometry of the source,

p, and the sensors, q. For the remainder of the paper, the

dependence of F and CR on p and q is implicitly assumed.

C. Known Source Optimal Sensor Placement

Much recent work has focused on the problem of placing

sensors relative to a known source location. Without loss

of generality, the source can be placed at the origin. Then,

denoting by θi the angle of gi, globally optimal sensor

configurations for maximization of the Fisher determinant

satisfy (Theorem 1 in [5]) the following two conditions:
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of (18),

L(q,µ) :=

∫

Pr

det (F)φ(‖p‖)dp +

M
∑

i=1

µi

(

qT
i qi − r2

)

,

(24)

where µ ∈ R
M is a vector of Lagrange multipliers. A point

q∗ satisfies the Karush-Kuhn-Tucker (KKT) [13] first order

necessary optimality conditions for this Lagrangian if there

exists a vector µ∗ ∈ R
M such that:

0 = q∗T
i q∗

i − r2 ∀i ∈ {1, 2, ...,M} (25)

0 = ∇





∫

Pr

det (F)φ(‖p‖)dp +
M
∑

j=1

µ∗

j

(

q∗T
j q∗

j − r2
)



 ,

(26)

where ∇ denotes the differential operator

∇ :=

[

∂

∂qi

]

(i=1,...,M)

. (27)

Condition (26) can be written for each i as:

2µiqi = −

∫

Pr

∂ det (F)

∂qi

φ(‖p‖)dp. (28)

After some algebra, we find using Lemma 3.3 that

∂ detF

∂qi

=
2

‖p − qi‖
gT

i F(gi − ḡ)⊥g⊥

i , (29)

where the perpendicular operator ⊥ is defined by

x⊥ =

[

0 −1
1 0

]

x, ∀ x ∈ R
2. (30)

Symmetric configurations, from Definition 2.1, play an

important role in the integral in (28). To see the symmetry,

consider a coordinate rotation in which the ith sensor, qi, is

placed on the positive x-axis. Then take two source points,

p and p̃, for which p̃ is p mirrored about the x-axis,

p̃ = Rp, (31)

where R is the elementary reflector about the x-axis defined

as:

R :=

[

1 0
0 −1

]

. (32)

Some algebra reveals

∂ detF

∂qi

∣

∣

∣

(p̃,q)
= R

∂ detF

∂qi

∣

∣

∣

(p,q)
. (33)

To show the optimality of the ith sensor (which now lies

on the x-axis), we employ (31) to split the integral in (28)

into two parts. When integrating over points not on the x-

axis, for every p there exists a p̃ for which the sum of the

two integrands have equal and opposite y-components and

equal x-components.

∂

∂qi

∫

Pr

detFφ(‖p‖)dp =

∫

P0

∂ detF

∂qi

φ(‖p‖)dp

+

∫

P+

[I + R]
∂ detF

∂qi

φ(‖p‖)dp.

(34)

In the first part, integrated over P0 ⊂ Pr, p lies on the x-

axis and in the second part, integrated over P+ ⊂ Pr, p has

a positive y-component. Integrating over P0 is trivially zero

because the integrand is zero at all points p ∈ P0 due to

the symmetry of the configuration. Notice that in (34) the

y-component cancels because

I + R =

[

2 0
0 0

]

, (35)

indicating that the right hand side of (28) is aligned with qi.

Thus, we conclude that there exists a multiplier,

µi = −

∫

P+

qT
i

‖qi‖2

[

1 0
0 0

]

∂ detF

∂qi

φ(‖p‖)dp, (36)

for each i so that the optimality conditions are satisfied.

We next consider a generalization of Theorem 3.2 in which

the sensors are confined to an annulus of radii r1 < r2

instead of an r-radius ring, but first we introduce a particular

symmetric configuration that will be used throughout the

remainder of this paper.

Definition 3.4 (Splay Configuration): A symmetric con-

figuration is said to be splay if

θj − θi =
2π

N
, for each j = i + 1, (37)

where θi is the angle of the vector qi with respect to the

x-axis.

Theorem 3.5 (Variable Distance Sensor Placement):

Assume in Problem 3.1 that the region D is an annulus of

radii r1 < r2, centered at the origin,

q ∈ DM
a , Da :=

{

x ∈ R
2|r2

1 ≤ xT x ≤ r2
2

}

, (38)

and the probability density function is truncated at a radius

less than r1 so that

p ∈ Pa, Pa :=
{

x ∈ R
2|xT x < r2

1

}

. (39)

Then, sensor configurations on the outer boundary of the

annulus,

qT
i qi = r2

2, ∀i ∈ {1, 2, ...,M}, (40)

that are additionally splay (37) satisfy the first order neces-

sary optimality conditions.

Proof: (of Theorem 3.5) The Lagrangian for (18) with

the inequality constraints (38) is now

L(q,µ,λ) :=

∫

Pa

det (F)φ(‖p‖)dp +

M
∑

i=1

µi

(

r2
1 − qT

i qi

)

+

M
∑

i=1

λi

(

qT
i qi − r2

2

)

(41)

where µ ∈ R
M and λ ∈ R

M , are vectors of Lagrange

multipliers. The KKT first order necessary conditions for
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Fig. 3. The integrand of (50) is plotted for p inside a disk of radius
r1 = 900 with M = 4 sensors placed in a splay configuration at radius
r2 = 1000. The important thing to note here is that the integral will be
positive even though the integrand is negative for some p. A nonlinear
scaling has been applied to the colormap to show details for negative values
of the integrand.

optimality are now ∀i ∈ {1, 2, ...,M}:

0 ≥ r2
1 − q∗T

i q∗

i (42)

0 ≤ µ∗

i (43)

0 = µ∗

i

(

r2
1 − q∗T

i q∗

i

)

(44)

0 ≥ q∗T
i q∗

i − r2
2 (45)

0 ≤ λ∗

i (46)

0 = λ∗

i

(

q∗T
i q∗

i − r2
2

)

(47)

0 = ∇L(q,µ,λ). (48)

Here, the first six relationships are complementary slackness

conditions to ensure that sensors remain in Da. Because

the sensor configuration in which we are interested have all

sensors at the outer radius r2 of Da (40), µi = 0, ∀i ∈
1, ...,M , the relationship (48) is identical to (26) from the

fixed radius problem. Thus we have already shown that

symmetric, and hence splay, configurations satisfy (48) in

the proof of Theorem 3.2.

What remains to be shown is that all M Lagrange multi-

pliers, λi, i = 1, . . . ,M have positive sign (46). Using (29),

(48) becomes

0 =

∫

Pa

2

‖p − qi‖
gT

i F(gi − ḡ)⊥g⊥

i φ(‖p‖)dp + 2λiqi.

(49)

To show that each Lagrange multiplier is positive, we solve

for λi and write the integration in polar coordinates,

λi =

r1
∫

0

2π
∫

0

−1

‖p − qi‖‖qi‖2
gT

i F(gi − ḡ)⊥qT
i g⊥

i dpθφ(ρ)ρdρ,

(50)
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Fig. 4. The inner integral in (50) is plotted vs the radius ρ of p for M
sensors placed in a splay configuration at a radius r2 = 1000. For all ρ, the
inner integral evaluates to a positive number indicating that λi is positive.
As ρ approaches zero the distibution looks more like a point mass, thus the
inner integral approaches zero.

where p = ρ∠pθ. Because the radially symmetric density

function φ(ρ) is non-negative, we need only to show that

the inner integral is positive for every ρ. Unfortunately, the

integrand in (50) does not have constant sign, see Fig. 3 for

example. Because a closed form computation of the integral

appears to be intractable, we refer the reader to Fig. 4, which

shows the inner integral plotted against ρ for various M in

a splay configuration.

IV. NUMERICAL RESULTS

In this section we include two numerical results that

support Theorem 3.5 and motivate a conjecture that is left for

future research. In the first, we study the splay configuration

found in Theorem 3.5 and evaluate how the expected Fisher

determinant varies with the outer radius r2. In the second,

we evaluate the expected Fisher determinant for a subset of

configurations found in Theorem 3.2.

A. Expected Fisher Determinant Maximum at the Boundary

In Theorem 3.5 we have shown that if the region confining

the sensors Da is an annulus of radius r1 < r2, centered

at the expected location of the source, then sensors placed

at the boundary of the region Da in a splay configuration

meet the first order necessary conditions for optimality. The

purpose of this section is to examine how the expected Fisher

determinant changes with the outer radius of the boundary.

In Fig. 5 it can be seen that the expected Fisher determinant

increases monontonically with r2 for both uniform and

truncated-Gaussian distributions. This observation supports

Theorem 3.5 in that if sensors are in a splay configuration

about the expected source location, then it is beneficial for

all the sensors to move out radially.
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Assuming the lemma holds for M ,

FM =
1

ν2
GT

MQ−1
M GM (55)

=
1

σ2ν2

(

M
∑

i=1

gig
T
i − M ḡḡT

)

, (56)

we examine M + 1 letting Γ = 1
M+1 and dropping ν and σ

for brevity,

Q−1
M+1 =

[

Q−1
M +

(

Γ
M

)

1M−11
T
M−1 −Γ1M−1

−Γ1T
M−1 ΓM

]

(57)

FM+1 =
[

GT
M gM+1 − g1

]

Q−1
M+1

[

GM

gT
M+1 − gT

1

]

(58)

= FM +
Γ

M
GT

M1M−11
T
M−1GM

− ΓGT
M1M−1(g

T
M+1 − gT

1 )

− Γ(gM+1 − g1)1
T
M−1GM

+ ΓM(gM+1 − g1)(g
T
M+1 − gT

1 )

= FM + ΓM (ḡM − gM+1) (ḡM − gM+1)
T

=

M
∑

i=1

gig
T
i + gM+1g

T
M+1 − Γ

[

M2ḡM ḡT
M

+gM+1g
T
M+1 + M ḡMgT

M+1 + MgM+1ḡ
T
M

]

=

M+1
∑

i=1

gig
T
i

− Γ
[

(M ḡM + gM+1) (M ḡM + gM+1)
T
]

=
M+1
∑

i=1

gig
T
i − (M + 1)

[

ḡM+1ḡ
T
M+1

]

.

The determinant of the Fisher information matrix (22)

follows directly from the symmetric form of the Fisher

information matrix (21),

det (F) =
1

σ4ν4
det

(

M
∑

i=1

gig
T
i − M ḡḡT

)

. (59)
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