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Abstract

Ecological monitoring of plant and animal species helps in main-
taining ecological balance. It helps in understanding the species, their
assemblage, changes that occur in their assemblage and factors causing
those changes. The present study involves monitoring of plant species
in rocky intertidal zones of Santa Rosa Island, California. Tradition-
ally, ecological monitoring has been done using photo transects. These
photo transects are then quantified manually by humans, but quan-
tifying a huge amount of data manually can be time-consuming and
prone to errors.

The present study helps to address these problems by using a ma-
chine learning technique - semantic segmentation. Additionally, im-
age classification is also performed. The study involves building two
convolutional neural networks - one from scratch and the other using
transfer learning on a publicly available network. Datasets used in the
study were collected by the Biology department at California State
University, Channel Islands and the network is built using a publicly
available framework - Keras.
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1 Introduction

1.1 Introduction

Environment management is very important to maintain the ecological bal-
ance. It can operate effectively with reliable information on the changes
to the environment and on the causes of those changes. Through ecological
monitoring, an important source of information is provided. Ecological moni-
toring aims at inferring causes of ecosystem changes, by measuring ecosystem
state variables in space and time [1].

Ecological monitoring in rocky intertidal zones, helps to track the species
assemblage and their biodiversity. It helps in understanding the species,
changes that occur in their assemblage over time and the factors that cause
those changes, and to make informed decisions pertaining to the ecological
balance. One such monitoring of plant and animal species in rocky intertidal
zone of Santa Rosa Island is shown in the Figure 1. Figure 1 shows the
variation in the assemblage of plant species during the winters over a period
of three years. It is seen that during the winters of 2016 and 2017 the area
was dominated by two species Phragmatopoma Californica and Phyllospadix;
however, in winter 2018 Phyllospadix was replaced by Silvetia Compressa.
Also, in winter 2018 Phragmatopoma Californica was present in abundance
as compared to winter 2017.

Winter 2016 Winter 2017 Winter 2018

Phyllospadix

Figure 1: Changes in assemblage of species over time at Beachers Bay, Santa Rosa Island
Intertidal Zone, CA. Image courtesy: Kaylen Meeker.

Ecological monitoring can be done using point intercepts, vertical tran-
sects or photo transects. The point intercept method gives clustered data



with good resolution of the species in random portions of the overall site, ver-
tical transects method gives a low resolution of the site but allows researchers
to collect data more evenly throughout the site and photo transects method
gives the highest amount of resolution of the site but the data from this
method is extremely difficult to process.

In the present study, photo transects are used as the source of information.
Small sections of the region are captured in each image. These images collect
a huge amount of ecological data for a region and provide a snapshot in time
of what the region looks like. The images quantify the presence of each
species in the region. Quantifving images, allows researchers to establish a
baseline and track any changes that occur in the species assemblage over
time. Further details about these images are provided in Chapter 4.

Typically, these images are quantified by humans to see the seasonal
variation in the assemblage of different species in a particular region. But
quantifving huge amounts of data manually can be time-consuming and can
contain human error. In recent yvears, the machine learning research commu-
nity has developed many techniques, as discussed in Chapter 2, to address
the problems that arise in manual quantification.

Machine learning research originates from the idea that a computer can
be given the ability to learn, as a human would do, without being explicitly
programmed. There are three types of machine learning techniques: Super-
vised learning, Unsupervised learning and Reinforcement learning.

e Supervised learning aims to learn a mapping from input to output
whose correct values are provided by a supervisor [2|. Supervised learn-
ing problems are grouped into classification and regression problems.
A classification problem is when the output is a categorical response
value i.e., where the data can be separated into specific classes such as
‘spam’ or ‘ham’ email, or ‘red’ or ‘blue’ color. A regression problem is
when the output is a continuous response such as value of a stock or
price of a house in a specific area.

e Unsupervised learning aims to find regularities in data without the
help of a supervisor [2]. Clustering is a type of unsupervised learning
problem. Clustering is the task of grouping a set of objects/ inputs in
such a way that objects/ inputs in the same group are similar to each
other than to those in another group.

e Reinforcement learning [3| is learning from the environment. In this
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learning, an agent (e.g. robot or controller) learns to take optimal
actions based on outcomes of the past actions.

1.2 Organization of Thesis

A brief description about to the motivation of the thesis is provided so far.
The remaining chapters are arranged as follows:

Chapter 2 gives the background knowledge needed to understand the
functionality of the present study. This chapter explains machine learning
in depth and gives a brief explanation of the available dataset. A thorough
study and reference to techniques currently used and those used in the past
are also included. Chapter 3 defines the problem statement of the present
study in detail. This chapter introduces the dataset and techniques used
in the present study to solve the problem. Chapter 4 gives brief details
about the datasets used in the present study. This chapter includes the
details about image preprocessing techniques used. Chapter 5 describes the
model architectures used in the present study. Chapter 6 demonstrates the
implementation of the solution provided by the present study, based on the
concepts mentioned in Chapter 2. This chapter explains how each approach
is used to solve the problem. Chapter 7 presents the results using evaluation
metrics. Chapter 8 provides the concluding remarks and possible extensions
to the present study.



2 Background

This chapter focuses on the details about basic concepts and terminology
used in machine learning. It also includes the details about related machine
learning techniques.

Neural Networks: One of the definitions of a neural network was provided
in [4] where the author stated that “a neural network is a computing system
made up of a number of simple, highly interconnected processing elements,
which process information by their dynamic state response to external inputs.”

The network’s organization and functioning are similar to that of neurons
in the human brain. Each layer in the neural network consists of group of
small units called neurons, followed by an activation function. An activation
function helps to non-linearly identify important features. The neurons in
one layer are connected to the neurons of the next layer.

The neural networks contain adaptive weights between the neurons. These
weights are then tuned by the learning algorithm. A cost function is used
along with a learning algorithm to optimize the model. Mathematical cal-
culations are performed by each node and the results are transmitted to all
the connected nodes. Figure 2 shows a simple neural network with an input
layer containing inputs x1, x2, x3 having weights w1, w2, w3. Mathematical
operations are performed, and the result is passed to the hidden layer. The
hidden layer then produces the input for the output layer which gives the
outputs v1 and v2.

Hidden layer

Input layer =
—input x;—»{ MWy kT y
Input > W,
Input a4

Figure 2: A simple neural network architecture.
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Figure 3: An underfitted, well fitted and overfitted model [5].

Overfitting and Underfitting: A machine learning algorithm is required
to perform well on unseen data. If the algorithm does not perform well on
the unseen data, then there are two reasons: either the model does not have
enough capacity, or it has too much capacity. The case where the model has
too much capacity is called overfitting. It happens when the model captures
feature as well as noise from the training data. Here, the training error is
low. However, it fails to perform well with test data and the test error is
high. The case where model has less capacity is underfitting. It means that
the model is not able learn well from the training data itself. In this case,
both the training and the testing error is high.

A model that has both the training and testing error low is a well fitted
model. Figure 3 shows the different cases of model fit. The left is an underfit
model, the center one is a well fit model and the right one is an overfit model.

Hyperparameters: Hyperparameters are the variables that determine the
network structure and how the network will be trained. They are set by
the user before the training. They regulate the capacity of the network.
Hyperparameters can be: number of layers in a network, learning rate!, etc.

'Learning rate is a hyperparameter that controls the weights adjustment required by
the network to converge [6].



They are parameters that are not learned during training.

Several models are tested with different hyperparameters and the model
that returns the lowest error rate is selected. For tuning the hyperparameters,
the dataset is divided into three sets: training, validation and test datasets.
The training dataset is used to fit the model, the validation dataset is used
to provide an unbiased evaluation of the model fit on the training dataset
while fine-tuning the hyperparameters and the test set is used to evaluate
the model performance.

Loss function: A loss function maps one or more variables onto a real
number, and this value represents loss. A loss is the discrepancy between
the predicted function and the target function. The learning of the model
involves reducing the loss described by the loss function. For classification
and semantic segmentation, cross-entropy loss is used. Cross-entropy loss
is a log loss function. It is used when the output of the model is a probability
distribution (probability of the test data belonging to a certain class).

Optimization: An optimization algorithm helps to minimize the loss func-
tion during training. A learning rate hyperparameter is mostly used in opti-
mization algorithms. It is an important hyperparameter of selection. With a
very small learning rate, the model will take a long time and may be stuck at
a local minimum. With a large learning rate, the model may not converge.
Figure 4 shows the loss vs epoch? graph for different learning rates.

loss

low learning rate

epoch

Figure 4: A loss vs epoch graph with different learning rate [7].

Gradient Descent [8]: It is an iterative optimization algorithm to find
a local minimum of a function. It can be illustrated from the following

20ne epoch means the entire dataset is passed through the neural network once.



Figure 5: Explanation of gradient descent concept {&].

example. Suppose a person is on a mountain and wants to go back to the
valley. The visibility is low due to fog. Therefore, only local information
is available to reach the valley. So, the person searches for steepest descent
from the current position and takes a step. By following the descending path
at each position, the person is likely to reach the valley. Figure 5 explains
the concept of gradient descent. The gradient descent algorithm calculates
the gradient on the whole dataset and performs only one update. Therefore,
it is slow to converge and difficult to control when the dataset is too large.

Stochastic Gradient Descent (SGD): It is a variant of the gradi-
ent descent algorithm. It solves the problems of traditional gradient descent
with a fixed learning rate. It performs parameter updates for each training
example and therefore is faster than gradient descent. Since it performs pa-
rameter updates, there are fluctuations in the loss function which sometimes
complicates the convergence to the minimum.

Adaptive Moment Estimation (Adam): It is an algorithm that com-
putes adaptive learning rates for each parameter. It is a popular optimization
algorithm because it is efficient, and it converges fast.

2.1 Convolutional Neural Network (CNN)

CNN is a type of neural network that is useful in finding patterns in images.
They are neural networks that have a convolutional layer as the first layer
in the network. The CNN architecture is built using different layers, like
convolutional layers, pooling layers and a fully connected layer. Parameters
are calculated at each layer.

As mentioned earlier, the first layer in a CNN is the convolutional layer.
The convolutional layer is a very important layer as most of the computa-



tional work is done by this layer. It contains a filter that convolves on the
input image and computes the dot products between the filter value and pixel
value of the image, summing up to produce an activation/ feature map. This
feature map helps in identifving features. Figure 6 shows the convolution
operation. In the figure, I represents the image, K represents the filter and
I x K represents the resulting feature map.

v
o
.

0[1|1[Tfefof0t.. _
0[0] 1 [ .. ... 114[3 4 1
0jofo]Lj1f1]0 1{o]1 1]21473]3
ofo|ofi1+{o|0T-%_[Oo|1]0] = |1{2]|3[4]1
olo|1[1]ofo|OT... 1{0]1 1{3(3[1]1
o|1[1]ofo]o]o 3(3[1]1]0
1{1]ofo]ofofo
I K I+K

Figure 6: The convolution operation where the output matrix is the feature map [9].

A convolutional layer is usually followed by an activation layer to in-
troduce nonlinearity to the network using an activation function (A). The
activation function decides which neuron should be fired.

A = Y(weight * input) + bias

—2 —
14e—22

A few examples of non-linear activation functions include tanh (A =

1), sigmoid (A = =) and Rectified Linear Units (ReLU)(A = max(0, z)).
ReLU has become a popular activation function in the last few years and
works better compared to the other two [10]. ReLU activates neurons with
positive values thereby reducing the computationally expensive exponential
operations like in sigmoid and tanh. It enables the network to converge faster
without affecting the accuracy as seen in [11]. It prevents the problem of
vanishing gradient. Figure 7 shows the working of a convolutional layer. The
next layer typically, is a pooling layer also known as downsampling layer. It is
used to reduce the dimensionality of each feature map but retains important




—input x,——»{ Wy

f(Tw; x;)

—input Xo—»( W

Figure 7: Working of convolutional layer.

information. There are various pooling methods, but mostly max pooling
is used. In max pooling, the largest element in the feature map within the
window is taken. Figure 8 shows the max pooling operation.
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Figure 8 The max pooling operation [12].

Dropout layers [13] are used in CNN as a regularizer®. They reduce
overfitting by preventing complex co-adaptions? on training data. The final
layer that is used in a typical CNN is a fully-connected layer. This layer looks
at the high-level features, in the output from previous layer, that strongly
correlate to a particular class. An example of a CNN is shown in Figure 9.

3Regularization is a process of introducing additional information in order to solve an
ill-posed problem or to prevent overfitting [14].

4Co-adaptions is when two or more neurons repeatedly begin to detect the same features
[15].
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Figure 9: Multi-layer structure for handwritten character recognition [16].

2.2 State-of-the-art Dataset

Images are becoming the fastest growing content. Datasets are created using
these images to analyze and find patterns. One of the earliest datasets used
for machine learning was proposed by Fei Fei Li (Chief Scientist of ATI/ML at
Google Cloud and Director of the Stanford Artificial Intelligence Lab and the
Stanford Vision Lab), who created ImageNet [17] - a large-scale ontology of
images built upon the backbone of the WordNet structure. The other state-
of-the-art image datasets like Modified National Institute of Standards and
Technology (MNIST)[18] database - a large database of handwritten digits,
Pascal Visual Object Classes (VOC), Microsoft Common Objects in Context
(COCO) [19], were created to perform machine learning tasks like image
classification, object localization, object recognition, semantic segmentation
and instance segmentation. These datasets were used in benchmark models
discussed in the following machine learning techniques.

2.3 Machine Learning Techniques

Traditionally, images were learned by Support Vector Machines (SVM)[20]
on a histogram of local features. Current approaches use artificial neural
networks. With the availability of a huge amount of data and increased
processing power, these approaches have led to human-like performance in
image classification, facial recognition and image segmentation.

Image classification: Image classification is to classify images based on
the dominant object in the image. It is an important and challenging problem
in the field on Computer Vision. Using machine learning for image classifica-
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tion saw early success in 2012, when AlexNet [11], a large and deep CNN won
the annual ImageNet Large Scale Visual Recognition Challenge (ILSVRC)®
with an error rate of 15.4%. Since then, variants of CNNs were produced for
the ILSVRC and they have exceeded human accuracy, which is considered
to lie in the 5-10% error range.

Other networks similar to Alexnet were built e.g. ZfNet [21] - a modified
AlexNet (The network obtains more information from the training data by
using 7 x 7 filter instead of 11 x 11 filter in the first convolution layer) was
the winner for ILSVRC 2013 with an error rate of 11.4%. A new network
with Inception concept was built. Inception includes replacing conventional
convolutional filter with complex filters to increase their learning abilities
and abstraction power [22]. GoogleNet [23] - a complex 22-layer network is
based on the concept of Inception. It won the ILSVRC 2014 with an error
rate of 6.7%.

Visual Geometry Group (University of Oxford) Network VGGNet [24] is
a simple and effective network that uses stacks of small-kernel convolution
instead of a large-kernel convolution network architecture. It did not win
the ILSVRC but is popular for image classification and localization task.
The most recent Squeeze-and-Excitation Network(SENET)|[25] architecture
with a top-5 error rate of 3.79% was developed to achieve the state-of-the-art
accuracy on ILSVRC 2017 for classification and localization. There are many
other networks that were built to test against various datasets.

Semantic Segmentation: Semantic segmentation is understanding the
image at the pixel level, i.e., each pixel of the image is labeled with the
object class it belongs to. Here an image is trained along with the image
mask that contains the part of the image concerned (foreground, and the
remaining is background).

Before deep learning, approaches like TextxonForest [26] and Random
Forest [27] based classifiers were used for semantic segmentation. Fully Con-
volutional Networks (FCN) for Semantic Segmentation [28], was the CNN
proposed for semantic segmentation. It was a dense network without a fully
connected layer producing segmented images. Using a CNN for segmenta-
tion was not desirable because of pooling layers in it. The pooling layers
increase the field of view and collect the information but discard the location

5A benchmark challenge in object category, classification and detection on hundreds of
object categories and millions of images.
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Figure 10: U-Net encoder-decoder architecture [29].

of the information. However, in semantic segmentation, the source of the
information is necessary, so two classes of networks evolved to tackle this
problem: One is an encoder-decoder and the other is a Conditional Random
Field (CRF).

In an encoder-decoder network, the encoder gradually reduces the spatial
dimension with pooling layers and the decoder gradually recovers the object
details (through the connection between encoder and decoder) and spatial di-
mension. There are usually short cut connections from encoder to decoder to
help the decoder recover the object details better. CRFs are graphical models
that smoothen segmentation by observing that similar intensity pixels tend
to belong to the same class. CRF post-processing is used after segmentation.

FCN and SegNet [30] were two initial encoder-decoder architectures.
These architectures did not have a CRF. Multi-Scale Context Aggregation
by Dilated Convolutions [31] and DeepLab [32] were based on dilated convo-
lutions that performs convolution operations with a modified (wider) kernel.
U-Net [29] an encoder-decoder network working on a small number of bio-
medical images and DeepLab v3 [33] are a few networks used for semantic
segmentation. Figure 10 shows U-net encoder-decoder architecture. It is a

12



U-shaped network, hence the name.

Training of all the above-mentioned networks (both image classification
and semantic segmentation) required huge datasets except U-Net. But in
many domains very few data samples are available for training. The problem
with a small dataset is that it leads to overfitting and reduces the accuracy
of the network. To overcome this problem data augmentation, dropout [13]
and transfer learning [34] were evolved.

Data Augmentation: In order to reduce overfitting caused by a small
dataset, data enhancement techniques are used to increase the amount of
data. Data enhancement involves adding a few geometric transformations
like flip, rotate, shift, zoom, scale, contrast, noise and color to the original
image dataset to increase the amount of dataset.

Transfer Learning: Transfer learning is used to take the knowledge learned
in a model and apply it to another task. This helps to use existing networks
without worrying about the computational power required to train the net-
work. There are three major transfer learning scenarios:

e CNN as a fixed feature extractor: In this method a CNN pretrained on
an existing dataset is used. The last fully-connected layer is removed,
and the remaining network is treated as a fixed feature extractor for
the new dataset.

e Fine-tuning the CNN: This method, not only involves replacing and
retraining the top layers of the CNN, but also fine-tuning the weights
of the pre-trained network. All layers can be fine-tuned or a higher-

level portion of the network is fine-tuned while keeping the earlier layers
fixed

e Pretrained models: Since it takes time to train a CNN, some people
release the model weights of their CNN trained on the state-of-the-art
datasets which can be used by others on their new datasets

CNN features are more generic in the early layers and more original dataset
specific in the later/higher layers. The selection of the transfer learning
depends on various factors, but the size of the dataset and its similarity to
the original dataset are the most important ones.
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o If the new dataset is small and similar to the original dataset then using
CNN as feature extractor is beneficial to avoid overfitting.

o If the new dataset is large and similar to the original dataset then
fine-tuning is used.

o If the new dataset is small and different from the original dataset then
it is better to train the SVM classifier using activations from earlier
layers.

o If the new dataset is large and different from the original dataset then
fine-tuning partially /completely is appropriate.

Example networks like [35], [36] and [37] were successfully created using
transfer learning.
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3 Objective

The goal of the thesis is to perform machine learning techniques like image
classification and semantic segmentation on the photo transects containing a
specific algae species, Silvetia Compressa, as in Figure 11 found in two rocky
intertidal zones in Santa Rosa Island - Beachers Bay and Skunk Point.

Figure 11: Sample image of algae species - Silvetia Compressa.

The objective can be defined as:

e Conduct a brief study on different machine learning techniques for com-
puter vision.

e Conduct a brief study on ways to apply machine learning techniques
on the given dataset.

e Analyze the dataset and apply image preprocessing required before
applying machine learning.

e Apply data augmentation techniques to increase the dataset size.
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e Build a classifier using a convolutional neural network. For the convo-
lutional neural network, try different variations of layers and hyperpa-
rameters and compare them.

¢ Build a network to perform semantic segmentation using transfer learn-
ing. For segmentation, a fine-tuned U-Net model is used.
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4 Dataset

This chapter provides details about the datasets used in the current study.
It contains information like where and how the images were captured and
the preprocessing techniques used on the images for machine learning.

4.1 Rocky Intertidal Zone Data

The images of various species were collected from photo transects at two
rocky intertidal zones in Santa Rosa Island - Beachers Bay and Skunk Point.
These images were captured using an SLR camera. For capturing the images,
eleven photo transects, each 20 m long and spaced 3 m away from one other,
were placed in each zone. A rig of 1 mx 1 m was used to capture a single
image and 58 such images were captured every 35 ¢m in order to create 65%
overlap. The images were preferably captured during low-tide. The low tides
in these zones were mostly during the night. Due to this many images were
captured using flash light and with this variability in the lighting conditions
different colors of the same species were observed.

The images contain nine different species namely Mytilus, Silvetia Com-
pressa, Phragmatopoma Californica, Phyllospandix, Endocladia, Ulva, An-
thropleura Sola and Red Algae. The present study focuses on Silvetia Com-
pressa. For classification, another species - Myltilus was used during the
training process. Figure 12 shows sample image of Mytilus used during the
training of classification model. Each image is an RGB image with a resolu-
tion of 34003400 approximately.

A total of 592 images having dominant species as Silvetia Compressa were
taken. These images contain Silvetia Compressa along with other species.
Out of the 592 images only 200 images that contain this species in abundance
were selected for training purpose and 50 images for validation and remaining
were used as testing datasets.

4.2 Preprocessing Data

Classification: For image classification using CNN, a huge amount of data
is required. Since a small amount of data was available, data augmenta-
tion was used. The I'mageDataGenerator class in Keras [38] provides the
ability to increase the size of datasets by altering the images. It has var-
ious altering parameters and the current study uses rescale, zoom_ range,
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Figure 12: Sample image of Mytilus.

shear _range, rotation_range, vertical flip and horizontal flip parameters
for training datasets. For validation datasets, only the rescale parameter
was used.

The images have RGB coefficients in range 0-255 that are very high for
the model to process. So rescaling i.e. multiplying the data with a fac-
tor of 1/255. is done to target values between 0 and 1. The zoom_range
randomly zooms inside the image and the shear range applies a random
shearing transformation. The rotation range defines the amount of rota-
tion. The vertical _flip and the horizontal flip is for randomly flipping half
of the images vertically and horizontally respectively. Figure 13 shows data
augmentation of a sample image using ImageDataGenerator class in Keras.

Semantic Segmentation For semantic segmentation, annotated images
(images containing only foreground object i.e. Silvetia Compressa) were cre-
ated. Here, out of total images only 85 images and their labels (annotated
images) were used for training and 15 images and their labels were used for
validation. The entire dataset was randomly split into training and validation
dataset while training the model. Figure 14 shows an example of a labeled
image. The left image is the original image and the right image is the image
label containing only the region covered by Silvetia Compressa. For creating
image labels, the Image Segmenter App in Matlab Image Processing Toolbox
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Figure 13: Data augmentation results. The various geometric transformations used are
rescale, zoom, shear, rotate, horizontal flip and vertical flip.
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Figure 14: An example of annotated image. Left image is the original image and right
image is an annotated image created using Image Segmenter App. The white pixels
indicate foreground region and black pixels indicate background region.

A imsge Segmenter - Segmentation - o X

Dot Becrmses

» Segmentations

Segmentation 1

» History

Figure 15: A screenshot of Image Segmenter App. The toolbox on top displays different
tools used in the Graph-cut. The area under green scribbles represent foreground element
and red scribbles represent background element.
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was used.

The Image Segmenter App provides many different ways to annotate
an image. The Graph-cut method was used in the present study. Graph-cut
is a semi-automatic segmentation technique used to annotate images into
foreground and background elements. To mark foreground and background
elements, lines called scribbles are drawn. Based on the scribbles, the image
segmenter segments the images automatically.

The segmented image is a binary image with white pixels indicating fore-
ground (Silvetia Compressa) region and black pixels indicating the back-
ground region. The segmented image might have some imperfections, so
morphological tools like dilation and erosion are used to fix the imperfec-
tions and to create a well-defined border. The segmented binary image was
then stored and used as label while training the model. Figure 15 shows the
working of the Graph-cut tool in the Image Segmenter App.

A total of 200 images were annotated out of which 100 were used as
training and validation datasets and remaining were used as ground truth
images to analyze the predicted mask of the test images. Further details
about this are provided in Chapter 6.
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5 Model Architecture

This chapter contains details about the models used for classification and
semantic segmentation in the present study.

5.1 Classification

For classification, a 5-layer deep CNN was created in Keras. It consists of
four convolutional layers and a final fully connected layer. The input shape
of the first layer is 300 x 300, the feature map is 32, having filter size of
5 x 5 and an ReL.U activation function. The other three convolutional layers
consist of 32, 64 and 64 feature maps. A max pooling layer is used after
each convolutional layer. Dropout layers are added to avoid overfitting. The
model was trained and validated on two sets of images, one set containing
Silvetia Compressa and the other set containing Mytilus. Figure 16 shows
the model architecture used.
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Figure 16: A 5-layer CNN for classifying Silvetia Compressa.
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5.2 Semantic Segmentation

For semantic segmentation, the present study uses the existing U-Net model
architecture and performs fine-tuning. U-Net was developed to perform se-
mantic segmentation on microscopy images. As mentioned earlier, U-Net
is an encoder-decoder architecture with skip connections. It consists of an
encoder (contracting) path and a decoder (expansive) path. In Chapter 2,
Section 2.3, Figure 10, the left part is the contracting path and the right part
is the expansive path.

The left part follows a typical CNN architecture with repeated application
of two 3 x 3 convolutional layers, each having an ReLLU activation function,
and followed by a 3 x 3 pooling layer with the max pooling operation having
stride® of 2. Downsampling operations are performed in this part. Down-
sampling is a max pooling layver which is an operation that summarizes each
neighborhood of 2 x 2 neurons with its maximum value thereby reducing the
dimension of the data by a factor of 4.

Each step in the expansive part has two 3 x 3 convolutional layers followed
by upsampling operations that double the output layer’s image dimension by
repeating each neuron’s value twice. The skip connections that are used are
operations that merge the output of last convolutional layer of each step at
the downsampling part onto the output of convolutional layer with the same
resolutions at the upsampling part.

The U-Net architecture was fine-tuned, as shown in Figure 17, for the
present study as mentioned below:

e An RGB input image of size 512 x 512 was used.
e No data augmentation was performed.

e Dropout layers were added to avoid overfitting caused in small training
datasets.

e Instead of a SGD optimizer an Adam optimizer was used.

6A stride is defined as the number of pixels by which the filter matrix shifts over the
input matrix while performing convolution {39].
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Figure 17: A fine-tuned U-Net architecture for performing semantic segmentation.
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6 Implementation

This chapter contains details about performing training on the models dis-
cussed in Chapter 5. The training was performed on a machine with an
Operating System (OS) - Ubuntu 16.04 and a Graphical Processing Unit
(GPU) - Nvidia GTX 1080Ti installed. Using a GPU, speeds up the training
process. Python code running on the Keras framework with a Tensorflow
backend was used.

Keras: Keras is a high-level neural networks Application Programming
Interface (API), written in Python enabling fast experimentation of various
machine learning techniques. It runs on top of either TensorFlow, Theano or
Microsoft Cognitive Toolkit (CNTK), which are software libraries for machine
learning. Keras provides:

e Easy and fast prototyping through user friendliness, modularity and
extensibility.

e Support for convolutional neural networks, recurrent networks and
their combination.

e CPU and GPU compatibility.

6.1 Classification

The data augmentation parameters were selected based on the training
evaluation results. The training evaluation results of a model that had a
high training and validation accuracy and a low training and validation loss
were selected. The first try was just rescaling the data. Figure 18 shows
the result of training without performing data augmentation. Since the data
size was small, overfitting was experienced. Next try was using zooming,
shearing along with rescaling. A huge difference between training and vali-
dation accuracy and losses was seen, as shown in Figure 19. So instead of
just zooming and shearing, mirroring using horizontal and vertical flip and
rotation were performed which gave better results as compared to the previ-
ous data augmentations. The evaluation metrics are discussed later in this
chapter.
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Figure 18: Results of training evaluation for classifier model without data augmentation
where overfitting is seen. The left graph shows the accuracy vs epoch for training and
validation datasets and the right graph shows the loss vs epoch for training and validation
datasets.
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Figure 19: Results of the training evaluation for classifier model using few data augmen-
tations. The left graph shows the accuracy vs epoch for training and validation datasets
and the right graph shows the loss vs epoch for training and validation datasets.

Regularizers were used to avoid overfitting. Dropout layers with proba-
bility between 0.2 and 0.5 were evaluated. Two dropout layers with probabil-
ities 0.25 and 0.5 were added. This enabled capturing more features in lower
layers but avoiding overfitting. A different regularization technique using L2
regularizer was also evaluated. But the evaluation results were different from
the expected results. Figure 20 shows the training and validation accuracy
and losses obtained using L2 regularizer. It was seen from the figure that the
validation accuracy was fluctuating and higher than the training accuracy
indicating that a lot of important features were dropped while training.
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Optimizers are needed to train the model and set the learning rates.
Three different optimizers were tried. The first one being the standard opti-
mizer - SGD, but it is not adaptive. Figure 21 shows the result of using SGD
with L2 regularizer. The next try was using RMSProp, which allows adaptive
learning rates, but it did not give expected results. Here, there was a large
difference between training and validation losses. So, Adam optimizer was
used, because it gave the best results as compared to the other two. Adam
also computes adaptive learning rates for each parameter. Adaptive learning

rate is known to give good results with sparse datasets [40].
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Figure 20: Results of training evaluation for classifier model using L2 regularizer. The
left graph shows the accuracy vs epoch for training and validation datasets and the right
graph shows the loss vs epoch for training and validation datasets.
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Figure 21: Results of training evaluation for classifier model using SGD with L2 regularizer.
The left graph shows the accuracy vs epoch for training and validation datasets and the
right graph shows the loss vs epoch for training and validation datasets.
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6.2 Semantic Segmentation

For segmentation, no data augmentation was performed. The first try was
using the original U-Net model without dropout. The original U-Net model
used SGD optimizer. The training evaluation results can be seen in Figure
22. From the figure, it is seen that the training accuracy and the valida-
tion accuracy was low for semantic segmentation. Also, the training and
validation loss was high.

Model Accuracy Mode! Loss

Epach Epoch

Figure 22: Results of training evaluation of U-Net model using SGD optimizer and without
dropout layer.The left graph shows the accuracy vs epoch for training and validation
datasets and the right graph shows the loss vs epoch for training and validation datasets.

So, dropout layers were added for the next try. The training evaluation
results can be seen in Figure 23. From the figure, it is seen that there was
no change in the training accuracy and the validation accuracy. Also, the
training and validation losses are high. Then the modifications mentioned
earlier i.e. addition of two dropout layers and using an Adam optimizer were
performed.
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Figure 23: Results of training evaluation of U-Net model using SGD optimizer and with
dropout layer. The left graph shows the accuracy vs epoch for training and validation
datasets and the right graph shows the loss vs epoch for training and validation datasets.

6.3 Hyperparameters

There are millions of parameters during training and they can cause the
CNN to behave differently than expected, so hyperparameters are tuned
methodically to get good convergence. The summary of each model with
number of parameters at each layer is provided in Table 1 and Table 2.

Table 1: Classifier summary.

| Layer (type) | Output Shape | Param
conv2d_9 (Conv2D) None, 296, 296, 32) | 2432
activation 9 (Activation) None, 296, 296, 32)
max_ pooling2d 7 (MaxPooling2) | (None, 148, 148, 32) | 0
)
)

(
(
(
conv2d_ 10 (Conv2D) (None, 144, 144, 32
activation 10 (Activation) (None, 144, 144, 32
max_ pooling2d 8 (MaxPooling2) | (None, 72, 72, 32) 0
dropout_ 7 (Dropout) (None, 72, 72, 32
(
(
(
(
(

conv2d 11 (Conv2D) None, 68, 68, 64
activation 11 (Activation)
conv2d 12 (Conv2D)

)
) | 51264
None, 68, 68, 64) | 0
None, 64, 64, 64) | 102464
)
)
)

activation 12 (Activation) None, 64, 64, 64 0

max_ pooling2d 9 (MaxPooling2) | (None, 32, 32, 64 0

dropout_ 8 (Dropout) (None, 32, 32, 64 0
Continued on next page
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Table 1 — continued from previous page

| Layer (type) Output Shape | Param
flatten 3 (Flatten) (None, 65536) 0
dense 5 (Dense) (None, 100) 6553700
dropout_ 9 (Dropout) (None, 100) 0
dense 6 (Dense) (None, 2) 202
Total parameteres: 6,735,694
Trainable parameters: 6,735,694
Non-trainable parameters: 0
Table 2: Segmentation summary

Layer (type) | Output Shape | Param
input_ 2 (InputLayer) (None, 512, 512, 3) |0
conv2d 25 (Conv2D) (None, 512, 512, 64) | 1792
conv2d 26 (Conv2D) (None, 512, 512, 64) | 36928
max_ pooling2d 5 (MaxPooling2D) | (None, 256, 256, 64) | 0
conv2d 27 (Conv2D) (None, 256, 256, 128 | 73856
conv2d 28 (Conv2D) (None, 256, 256, 128 | 147584
max_ pooling2d 6 (MaxPooling2D) | (None, 128, 128, 128 | 0
conv2d 29 (Conv2D) (None, 128, 128, 256 | 295168
conv2d 30 (Conv2D) (None, 128, 128, 256 | 590080
max_ pooling2d 7 (MaxPooling2D) | (None, 64, 64, 256) | 0
conv2d 31 (Conv2D) (None, 64, 64, 512) | 1180160
conv2d 32 (Conv2D) (None, 64, 64, 512) 2359808
dropout_ 3 (Dropout) (None, 64, 64, 512) | 0
max_ pooling2d 8 (MaxPooling2D) | (None, 32, 32, 512) | 0
conv2d 33 (Conv2D) (None, 32, 32, 1024) | 4719616
conv2d 34 (Conv2D) (None, 32, 32, 1024) | 9438208
dropout_ 4 (Dropout) (None, 32, 32, 1024) | 0
up_sampling2d 5 (UpSampling2D) | (None, 64, 64, 1024) | 0
conv2d 35 (Conv2D) (None, 64, 64, 512) 2097664
merge 5 (Merge) (None, 64, 64, 1024) | 0

Continued on next page
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Table 2 — continued from previous page

Layer (type) | Output Shape | Param
conv2d 36 (Conv2D) (None, 64, 64, 512) | 4719104
conv2d 37 (Conv2D) (None, 64, 64, 512) 2359808
up_sampling2d 6 (UpSampling2D) | (None, 128, 128, 512 | 0
conv2d _38 (Conv2D) (None, 128, 128, 256 | 524544
merge 6 (Merge) (None, 128, 128, 512 | 0
conv2d 39 (Conv2D) (None, 128, 128, 256 | 1179904
conv2d 40 (Conv2D) (None, 128, 128, 256 | 590080
up_sampling2d 7 (UpSampling2D) | (None, 256, 256, 256 | 0
conv2d 41 (Conv2D) (None, 256, 256, 128 | 131200
merge 7 (Merge) (None, 256, 256, 256 | 0
conv2d 42 (Conv2D) (None, 256, 256, 128 | 295040
conv2d 43 (Conv2D) (None, 256, 256, 128 | 147584
up_sampling2d 8 (UpSampling2D) | (None, 512, 512, 128 | 0
conv2d 44 (Conv2D) (None, 512, 512, 64) | 32832
merge 8 (Merge) (None, 512, 512, 128 | 0
conv2d 45 (Conv2D) (None, 512, 512, 64) | 73792
conv2d 46 (Conv2D) (None, 512, 512, 64) | 36928
conv2d 47 (Conv2D) (None, 512, 512, 2) 1154
conv2d 48 (Conv2D) (None, 512, 512, 1) | 3

Total parameters: 31,032,837
Trainable parameters: 31,032,837
Non-trainable parameters: 0

Tuning learning rate: Different approaches were tried to tune the hy-
perparameter. Through trial and error method, a learning rate was decided.
For the training of CNN for classification, an Adam optimizer was used with
learning rate of 1le — 5. For the training of U-Net for segmentation, an Adam
optimizer was used with learning rate of le—4. The learning rate was decided
based on the training loss. The higher learning rates were causing the model
to converge faster, and the model was also overfitting. The training loss was
decreasing, and accuracy was increasing whereas there was very slow change
in validation loss and accuracy. The smaller learning rates caused the model
to converge very slowly and the difference in the optimal training loss with
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Figure 24: The accuracy and loss graph of the selected model for classification problem.
The left graph shows the accuracy vs epoch for training and validation datasets and the
right graph shows the loss vs epoch for training and validation datasets.
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Figure 25: The accuracy and loss graph of the selected model for semantic segmentation
problem. The left graph shows the accuracy vs epoch for training and validation datasets
and the right graph shows the loss vs epoch for training and validation datasets.

the selected learning rate and the one with small learning rate was small.

Training was carried on until the stopping criteria has met. Initially
the number of epochs was used as a stopping criteria but the model was
not trained optimally i.e., training continued even after the accuracy started
decreasing or loss started increasing. So, to avoid this situation FarlyStopping
class in Keras was used.

With EarlyStopping, validation loss is monitored and if there is no change
or increase in the validation loss for specified number of epochs then the
training stops. Model checkpoint was added to save best weights. The model
and weights were saved and used for testing the classifier and segmentation.
It took 5 to 6 hours to train the model for classification and 30 to 40 mins
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to train the model for segmentation.

In classification, categorical cross entropy was used as a loss function and
accuracy metrics were used to evaluate the model during the training process.
Categorical cross entropy was used instead of binary cross entropy, to classify
two classes, because the training and validation losses were very high when
using binary cross entropy. In semantic segmentation, binary cross entropy
was used as loss function and accuracy metrics were used to evaluate the
model during the training process.

When training the model with training and validation datasets, it is
important to analyze the accuracy and loss of training versus validation
datasets. For this, a graph was plotted for both classification and segmen-
tation. Figure 24 and Figure 25 show the accuracy and loss graph of the
selected model for classification and semantic segmentation respectively. For
a good training model, not only the accuracy should be as high as possible
and the loss should be as low as possible, but also the difference between
the training and validation accuracy and loss should be as small as possible.
From Figure 24 it is seen that the difference was more, so the trained model
will not perform as desired whereas in Figure 25 it is seen that the difference
was low and the performance of this model will be good.
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7 Results

This chapter consists of the results obtained after testing the model on test
datasets and the details about how the model was evaluated. Since the model
and best weights were saved after the training is performed, it was easier to
test the images for classification and semantic segmentation.

Confusion matrix is a table that describes the performance of a classi-
fication model on the test datasets. It consists of four different combinations
of predicted and actual values. Table 3 shows the four different combinations.

Table 3: Confusion matrix used for evaluation.

Actual Value
Positive | Negative
Positive TP FP
Negative FN TN

Predicted Value

e True Positive (TP): When the predicted value is positive and the
actual value is also positive

e False Positive (FP): When the predicted value is positive but the
actual value is negative.

e True Negative (TN): When both, the predicted value and the actual
value are negative.

e False Negative (FN): When the predicted value is negative but the
actual value is positive.

This table helps to find Recall, Precision, F-score, etc. In the present study,
precision and recall were used to evaluate the model on test datasets along
with accuracy.

Recall: It is a measure that calculates the fraction of predicted true
positive values over total actual positive values. The higher the recall the
better the model. It is given by the formula:

TP
Recall = TPIFN
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Precision: It is a measure that calculates the fraction of predicted true
positive values over total predicted positive values. It is given by the formula:

TP

Precision = TPLFP

Accuracy: It is a measure that calculates the fraction of predicted true
values over total predicted values. It is given by the formula:

TP4+TN

Accuracy = wprppirnTEN

7.1 Classification

For classification, a test dataset with 96 images that are not seen by the
model was used, out of which 60 images contain Silvetia Compressa and 36
contain other species. The images were tested using saved model with 95.82%
training accuracy and 86.23% validation accuracy. While testing the images
for classification, the image size was changed to the size of the input data
used during training. In the present study the test image size was set to
300 x 300. These images were then tested using the predict class in Keras.

The results of the test images were stored in a CSV file. The confusion
matrix for the tested images is given in Table 4.

Table 4: Confusion matrix created after testing the classification model.

Actual Value
Positive | Negative
Positive 43 17
Negative 17 19

Predicted Value

From the above confusion matrix, it is seen that out of 60 images con-
sisting Silvetia Compressa the model was able to identify 43 images correctly
and failed to identify 17 images. It is also seen that there were 17 images
that the model wrongly predicted as Silvetia.

A model with higher precisions relates to low false positive rate. There-
fore, the higher the value of precision the better the model. However, preci-
sion alone is not enough to evaluate the model. So, recall was also used. A
model with low recall relates to high number of false negatives. Therefore,
higher the value of recall the better is the model. The tested model has a
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precision measure of 0.716, recall measure of 0.716 and accuracy of 64.6%
which indicated that the classifier was not accurate.

It was seen that the model had good training and validation accuracy but
the accuracy on test result was not good. On checking the images that were
marked as false positive and false negative it was seen that the variability in
the color of Silvetia Compressa in the images captured in different lighting
condition affected the accuracy of the model. The accuracy of the model can
be increased if the model is trained using dataset containing a higher number
of such images.

7.2 Semantic Segmentation

For semantic segmentation a test dataset of 50 images was used. These
images were annotated manually, and the annotated images served as ground
truth images for evaluation. The testing was performed using the model with
training accuracy of 97.56 % and validation accuracy of 95.24 % and training
loss of 0.098 and validation loss of 0.152.

Initially the test images were not processed so the images that were bright
or taken using flash were not segmented well. Figures 26 and 27 show the
results of the model on unprocessed test images. Figure 26 shows that for
the image taken under normal lights the model segments properly. Figure
27 shows that for the images that are bright, the model does not segment
properly. So, two processing techniques - histogram equalization and adaptive
histogram equalization (CLAHE) were tried.

Figure 26: Result of unprocessed test image. The left image is original image, center image
is the annotated image, right image is the predicted mask.
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Figure 27: Result of unprocessed test image. The left image is the original image, center
image is the annotated image, right image is the predicted mask.

Figure 28: Result of test images after histogram equalization. The left image is the original
image after histogram equalization, center image is the annotated image, right image is
the predicted mask.

After trying histogram equalization, the results were good. The model
was able to segment all the test images properly. Figure 28 shows the results
of the model on test images after histogram equalization.

Adaptive histogram equalization (CLAHE) did a good job segmenting
most of the test images however the results with histogram equalization were
better. Figure 29 shows the results of the model on test images after CLAHE.
On comparing the right image of Figure 28 and Figure 29 it is seen that
the result after histogram equalization is similar to the ground truth image
(annotated image).

There were some pixels that were incorrectly segmented as Silvetia Com-
pressa, as shown in Figure 30. But the overall results of the segmented images
were good. So, histogram equalization was performed on all the test images
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Figure 29: Result of test image after adaptive histogram equalization. The left image is
the original image after adaptive histogram equalization, center image is the annotated
image, right image is the predicted mask.

before testing.

Figure 30: Result of test images segmented falsely in few regions. The left image is the
original image after adaptive histogram equalization, center image is the annotated image,
right image is the predicted mask. The predicted mask has some extra region segmented.

The segmented results of these pre-processed images were then evaluated
by calculating the confusion matrix for each image. Using the confusion
matrix, Sgrensen-Dice coefficient was calculated for each image. Table 5
shows the confusion matrix created using the average count true positive,
true negative, false positive and false negative pixel values of 50 test images.

Sgrensen-Dice coefficient: It is a statistical metric used for comparing
the similarity between two images. It is given by the formula:

2TP

Sorensen-Dice coefficient = TP FPIFN
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Table 5: Confusion matrix created after testing the segmentation model.

Actual Value
Positive | Negative
Positive | 124229.1 8827.54
Negative | 5554.06 | 123533.34

Predicted Value

The average value of dice coeflicients for the 50 test images is 0.9171. This
value indicates that on an average the predicted mask and the annotated
image are 91.71% similar. The accuracy for each image was also calculated,
using the values from confusion matrix in Table 5. The average accuracy is
94.52 % which is close to the validation accuracy.

Figure 31: The predicted mask overlapping the original image for researchers to analyze.
The left image is original test image, the center image is the predicted mask and the right
image is the overlapped image.

The goal of the present study was to perform ecological monitoring on
the assemblage of Silvetia Compressa. So, a CSV file was created that stores
the percentage of Silvetia Compressa present in each predicted mask image.
Also, an image with predicted mask overlapping the original image was cre-
ated so that the researchers monitoring the assemblage can see the falsely
segmented and unsegmented areas in the image. Figure 31 shows the example
of predicted mask overlapping the original image.
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8 Conclusion and Future Work

This chapter summarizes the present study and provides suggestions for fu-
ture improvements.

Conclusion: The major motivation of undertaking this work was to gain
understanding of designing, implementing and evaluating a convolutional
neural network. This was defined as an image classification and semantic
segmentation problem, to identify a specific algae species - Silvetia Com-
pressa. The present study investigated the image classification problems by
designing a CNN. Then implementing it using Keras and evaluating it with
different metrics. It also investigated the problem of semantic segmentation
by fine-tuning an existing model and achieved a good accuracy.

By investigating these problems, an in-depth understanding of various
machine learning techniques was achieved. It helped to understand how
to tune hyperparameters, how addition of dropout layers can help reducing
overfitting, how selecting a proper loss function can affect the accuracy and
loss of the model. The main goal was to reduce the time required to analyze
the images for ecological monitoring and to make it less prone to human
error. It was achieved by creating an automated tool to find the assemblage
of Silvetia Compressa by implementing semantic segmentation.

Future Work: The image classification model created was not as accurate
as it should be. So an improvement can be made to the image classification
model by using more training data, preprocessing it well for proper identifi-
cation by the machine. Improving the image quality can help the machine to
pick features specific to a particular species and not confusing two different
species as one.

The semantic segmentation model was able to provide good results. But
there are a few images where it segments few pixels that do not belong to
Silvetia Compressa. Figure 30 shows one such example. Improvements in
training and preprocessing can be done to achieve more accurate results.

As mentioned in Chapter 4 there are other species that are present in the
two rocky intertidal zones of Santa Rosa Island. The created models should
be tested on the new species and a multiclass classification and segmentation
model should be implemented to identify these species.
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