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Abstract
Ecological monitoring of plant and animal species helps in main­

taining ecological balance. It helps in understanding the species, their 
assemblage, changes that occur in their assemblage and factors causing 
those changes. The present study involves monitoring of plant species 
in rocky intertidal zones of Santa Rosa Island, California. Tradition­
ally, ecological monitoring has been done using photo transects. These 
photo transects are then quantified manually by humans, but quan­
tifying a huge amount of data manually can be time-consuming and 
prone to errors.

The present study helps to address these problems by using a ma­
chine learning technique - semantic segmentation. Additionally, im­
age classification is also performed. The study involves building two 
convolutional neural networks - one from scratch and the other using 
transfer learning on a publicly available network. Datasets used in the 
study were collected by the Biology department at California State 
University, Channel Islands and the network is built using a publicly 
available framework - Keras.
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1 In troduction

1.1 Introduction
E nv ironm en t m anagem en t is very im p o rta n t to  m a in ta in  th e  eeologieal ba l­
ance. I t  can  o p e ra te  effectively w ith  reliable in fo rm ation  on th e  changes 
to  th e  env ironm en t an d  on th e  causes of those  changes. T h ro u g h  eeologieal 
m onito ring , an  im p o rta n t source of in fo rm ation  is provided. Eeologieal m oni­
to ring  aim s a t inferring causes of ecosystem  changes, by m easuring  ecosystem  
s ta te  variab les in space and  tim e |1|,

Eeologieal m on ito ring  in rocky in te r tid a l zones, helps to  tra c k  th e  species 
assem blage an d  th e ir  b iodiversity . I t  helps in u n d e rs tan d in g  th e  species, 
changes th a t  occur in th e ir  assem blage over tim e  an d  th e  facto rs th a t  cause 
those  changes, and  to  m ake inform ed decisions p e rta in in g  to  th e  eeologieal 
balance. O ne such m on ito ring  of p la n t and  an im al species in rocky in te rtid a l 
zone of S an ta  R osa Is land  is show n in th e  F igure  1. F igure  1 shows th e  
varia tion  in th e  assem blage of p la n t species du ring  th e  w in ters over a period  
of th ree  years. I t  is seen th a t  du ring  th e  w in ters of 2016 and  2017 th e  area  
was d o m in a ted  by tw o species P h ra g m a to p o m a  C aliforniea an d  P hyllospadix ; 
however, in w in te r 2018 P hy llo spad ix  was rep laced  by S ilvetia C om pressa, 
Also, in w in ter 2018 P h ra g m a to p o m a  C aliforniea was p resen t in abundance  
as com pared  to  w in te r 2017.

Figure 1: Changes in assemblage of species over time at Beachers Bay, Santa Rosa Island 
Intertidal Zone, CA. Image courtesy: Kaylen Meeker.

Ecological m on ito ring  can  be done using p o in t in tercep ts, vertica l t r a n ­
sects or p h o to  tran sec ts . T he  p o in t in te rcep t m e th o d  gives c lustered  d a ta
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with good resolution of the species in random portions of the overall site, ver­
tical transects method gives a low resolution of the site but allows researchers 
to collect data more evenly throughout the site and photo transects method 
gives the highest amount of resolution of the site but the data from this 
method is extremely difficult to process.

In the present study, photo transects are used as the source of information. 
Small sections of the region are captured in each image. These images collect 
a huge amount of ecological data for a region and provide a snapshot in time 
of what the region looks like. The images quantify the presence of each 
species in the region. Quantifying images, allows researchers to establish a 
baseline and track any changes that occur in the species assemblage over 
time. Further details about these images are provided in Chapter 4,

Typically, these images are quantified by humans to see the seasonal 
variation in the assemblage of different species in a particular region. But 
quantifying huge amounts of data manually can be time-consuming and can 
contain human error. In recent years, the machine learning research commu­
nity has developed many techniques, as discussed in Chapter 2, to address 
the problems that arise in manual quantification.

Machine learning research originates from the idea that a computer can 
be given the ability to learn, as a human would do, without being explicitly 
programmed. There are three types of machine learning techniques: Super­
vised learning, Unsupervised learning and Reinforcement learning,

• Supervised learning aims to learn a mapping from input to output 
whose correct values are provided by a supervisor [2], Supervised learn­
ing problems are grouped into classification and regression problems, 
A classification problem is when the output is a categorical response 
value i.e,, where the data can be separated into specific classes such as 
‘spam’ or ‘ham’ email, or ‘red’ or ‘blue’ color, A regression problem is 
when the output is a continuous response such as value of a stock or 
price of a house in a specific area,

• Unsupervised learning aims to find regularities in data without the 
help of a supervisor [2], Clustering is a type of unsupervised learning 
problem. Clustering is the task of grouping a set of objects/ inputs in 
such a way that objects/ inputs in the same group are similar to each 
other than to those in another group,

• Reinforcement learning [3] is learning from the environment. In this
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learning, an agent (e.g. robot or controller) learns to take optimal 
actions based on outcomes of the past actions,

1.2 Organization of Thesis
A brief description about to the motivation of the thesis is provided so far. 
The remaining chapters are arranged as follows:

Chapter 2 gives the background knowledge needed to understand the 
functionality of the present study. This chapter explains machine learning 
in depth and gives a brief explanation of the available dataset, A thorough 
study and reference to techniques currently used and those used in the past 
are also included. Chapter 3 defines the problem statement of the present 
study in detail. This chapter introduces the dataset and techniques used 
in the present study to solve the problem. Chapter 4 gives brief details 
about the datasets used in the present study. This chapter includes the 
details about image preprocessing techniques used. Chapter 5 describes the 
model architectures used in the present study. Chapter 6 demonstrates the 
implementation of the solution provided by the present study, based on the 
concepts mentioned in Chapter 2, This chapter explains how each approach 
is used to solve the problem. Chapter 7 presents the results using evaluation 
metrics. Chapter 8 provides the eoneluding remarks and possible extensions 
to the present study,

3



2  B a c k g r o u n d

T his c h ap te r focuses on th e  deta ils  a b o u t basic concepts and  term ino logy  
used in m achine learn ing . I t  also includes th e  deta ils  a b o u t re la ted  m achine 
learn ing  techniques.

N e u r a l  N e tw o r k s :  O ne of th e  defin itions of a neu ra l netw ork  was p rovided  
in |4| w here th e  a u th o r  s ta te d  th a t  " a  neu ra l netw ork is a com puting system  
m ade up of a num ber of sim ple , highly in terconnected  processing elem ents, 
which process in fo rm atio n  by th e ir  dynam ic s ta te  response to ex ternal inpu ts  " 

T he  ne tw ork ’s o rgan iza tion  an d  function ing  are sim ilar to  th a t  of neurons 
in th e  h u m an  b rain . E ach  layer in th e  neu ra l netw ork  consists of g roup of 
sm all u n its  called neurons, followed by an  ac tiva tion  function . A n ac tiva tion  
function  helps to  non-linearly  identify  im p o rta n t fea tu res. T he  neurons in 
one layer are  connected  to  th e  neurons of th e  nex t layer.

T he  neura l netw orks con ta in  ad ap tiv e  w eights betw een  th e  neurons. T hese 
w eights are  th en  tu n ed  by th e  learn ing  a lgorithm , A cost function  is used 
along w ith  a learn ing  a lgo rithm  to  op tim ize th e  m odel. M ath em atica l cal­
cu la tions are  perfo rm ed  by each node an d  th e  resu lts  are  tra n sm itte d  to  all 
th e  connected  nodes. F igu re  2 shows a sim ple neu ra l netw ork  w ith  an  in p u t 
layer con ta in ing  in p u ts  x l ,  x2, x3 hav ing  w eights w l, w2, w3. M ath em atica l 
op era tio n s  are perfo rm ed , an d  th e  resu lt is passed  to  th e  h idden  layer. T he 
h idden  layer th en  p roduces th e  in p u t for th e  o u tp u t layer which gives th e  
o u tp u ts  y l  and  y2.

Figure 2: A simple neural network architecture.
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Under-fitting

(too simple to 
explain the 
variance)

Appropriate-fitting Over-fitting

(forcefitting -  too 
good to be true)

Figure 3: An underfitted, well fitted and overfitted model fa].

Overfitting and Underfitting: A m achine learn ing  algo rithm  is required  
to  perfo rm  well on unseen d a ta . If  th e  a lgo rithm  does no t perfo rm  well on 
th e  unseen d a ta , th e n  th e re  are tw o reasons: e ith e r th e  m odel does no t have 
enough capacity , or it has to o  m uch capacity . T he  case w here th e  m odel has 
to o  m uch capac ity  is called overfitting . I t h ap p en s  w hen th e  m odel cap tu res  
fea tu re  as well as noise from  th e  tra in in g  d a ta . H ere, th e  tra in in g  erro r is 
low. However, it fails to  perfo rm  well w ith  te s t d a ta  and  th e  te s t e rro r is 
high. T he  case w here m odel has less capac ity  is u nderfitting . I t  m eans th a t  
th e  m odel is no t able learn  well from  th e  tra in in g  d a ta  itself. In  th is  case, 
b o th  th e  tra in in g  and  th e  te s tin g  erro r is high,

A m odel th a t  has b o th  th e  tra in in g  and  te s tin g  e rro r low is a well fitted  
m odel. F igu re  3 shows th e  different cases of m odel fit. T he  left is an  underfit 
m odel, th e  cen ter one is a well fit m odel an d  th e  righ t one is an  overfit m odel.

Hyperparameters: H yp erp aram e te rs  are th e  variab les th a t  de term ine  th e  
netw ork  s tru c tu re  and  how th e  netw ork  will be tra in ed . T hey  are set by 
th e  user before th e  tra in in g . T hey  regu la te  th e  capacity  of th e  netw ork. 
H y p erp aram e te rs  can  be: num ber of layers in a netw ork, learn ing  r a t e 1, etc.

1 Learning rate is a hyperparanieter that controls the weights adjustment required by 
the network to converge [6],

5



T hey  are  p a ram e te rs  th a t  are no t learned  d u ring  tra in in g .
Several m odels are te s te d  w ith  different h y p e rp a ram e te rs  and  th e  m odel 

th a t  re tu rn s  th e  lowest e rro r ra te  is selected. For tu n in g  th e  h y p erp aram ete rs , 
th e  d a ta se t is d iv ided  in to  th re e  sets: tra in in g , va lida tion  an d  te s t d a ta se ts . 
T he  tra in in g  d a ta se t is used to  fit th e  m odel, th e  valida tion  d a ta se t is used 
to  provide an  unb iased  evaluation  of th e  m odel fit on th e  tra in in g  d a ta se t 
w hile fine-tun ing  th e  h y p e rp a ram e te rs  an d  th e  te s t se t is used to  evaluate  
th e  m odel perform ance.

Loss function: A loss function  m aps one or m ore variab les on to  a real 
num ber, an d  th is  value rep resen ts  loss, A loss is th e  d iscrepancy  betw een 
th e  p red ic ted  function  and  th e  ta rg e t function . T he  learn ing  of th e  m odel 
involves reducing  th e  loss described  by th e  loss function . For classification 
and  sem antic  segm en ta tion , cross-en tropy  loss is used. Cross-entropy loss 
is a log loss function . I t is used w hen th e  o u tp u t of th e  m odel is a p ro b ab ility  
d is tr ib u tio n  (p robab ility  of th e  te s t d a ta  belonging  to  a ce rta in  class).

Optimization: A n op tim iza tio n  a lgo rithm  helps to  m inim ize th e  loss func­
tio n  du ring  tra in in g , A learn ing  ra te  h y p e rp a ram e te r is m ostly  used in o p ti­
m ization  algorithm s. I t  is an  im p o rta n t h y p e rp a ram e te r of selection. W ith  a 
very sm all learn ing  ra te , th e  m odel will take  a long tim e and  m ay be s tuck  a t 
a local m inim um . W ith  a large learn ing  ra te , th e  m odel m ay no t converge. 
F igure  4 shows th e  loss vs ep o ch 2 g rap h  for different learn ing  ra tes.

Figure 4: A loss vs epoch graph with different learning rate [7],

Gradient Descent [8]: I t is an  ite ra tiv e  o p tim iza tio n  a lg o rithm  to  find 
a local m in im um  of a function . I t  can  be illu s tra ted  from  th e  following

2 One epoch means the entire dataset is passed through the neural network once.
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exam ple. Suppose a person  is on a m o u n ta in  and  w ants to  go back  to  th e  
valley. T he  v isib ility  is low due to  fog. T herefore, only local in fo rm ation  
is available to  reach th e  valley. So, th e  person  searches for s teep est descent 
from  th e  cu rren t position  and  takes a step . By following th e  descending p a th  
a t each position , th e  person  is likely to  reach th e  valley. F igure  5 explains 
th e  concep t of g rad ien t descent. T he  g rad ien t descent a lgo rithm  calcu lates 
th e  g rad ien t on th e  whole d a ta se t and  perform s only one u p d a te . T herefore, 
it is slow to  converge and  difficult to  con tro l w hen th e  d a ta se t is to o  large. 

S to c h a s t ic  G r a d ie n t  D e s c e n t  ( S G D ) :  I t  is a v a rian t of th e  g rad i­
en t descent a lgorithm . I t solves th e  problem s of tra d itio n a l g rad ien t descent 
w ith  a fixed learn ing  ra te . I t  perform s p a ra m e te r  u p d a te s  for each tra in in g  
exam ple an d  therefo re  is fas te r th a n  g rad ien t descent. Since it perform s p a ­
ram e te r u p d a te s , th e re  are fluc tuations  in th e  loss function  w hich som etim es 
com plicates th e  convergence to  th e  m inim um .

A d a p t iv e  M o m e n t  E s t im a t i o n  ( A d a m ) : I t  is an  a lgo rithm  th a t  com ­
p u tes  ad ap tiv e  learn ing  ra tes  for each p a ram ete r. I t  is a p o p u la r op tim iza tion  
a lgo rithm  because it is efficient, and  it converges fast,

2 .1  C o n v o l u t i o n a l  N e u r a l  N e t w o r k  ( C N N )

CX X is a ty p e  of neu ra l netw ork  th a t  is useful in finding p a tte rn s  in im ages. 
T hey  are  neu ra l netw orks th a t  have a convolu tional layer as th e  first layer 
in th e  netw ork. T he  CX X a rch itec tu re  is b u ilt using different layers, like 
convolu tional layers, pooling  layers and  a fully connected  layer. P a ram e te rs  
are  ca lcu la ted  a t  each layer.

As m entioned  earlier, th e  first layer in a CX X  is th e  convolu tional layer. 
T he  convolu tional layer is a very  im p o rta n t layer as m ost of th e  eom puta-

Figure 5: Explanation of gradient descent concept [8].
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tional work is done by this layer. It contains a filter that convolves on the 
input image and computes the dot products between the filter value and pixel 
value of the image, summing up to produce an activation/ feature map. This 
feature map helps in identifying features. Figure 6 shows the convolution 
operation. In the figure, /  represents the image, K  represents the filter and 
I  * K represents the resulting feature map.

I K I * K
Figure 6: The convolution operation where the output matrix is the feature map [9],

A convolutional layer is usually followed by an activation layer to in­
troduce nonlinearity to the network using an activation function (A), The 
activation function decides which neuron should be fired,

A = T.(weight * input) + bias

A few examples of non-linear activation functions include tanh (A =  1+e2_2x — 
1), sigmoid (A =  1_1e-x) and Rectified Linear Units (ReLU)(A =  max(0,x)), 
ReLU has become a popular activation function in the last few years and 
works better compared to the other two |10|, ReLU activates neurons with 
positive values thereby reducing the computationally expensive exponential 
operations like in sigmoid and tanh. It enables the network to converge faster 
without affecting the accuracy as seen in |11|, It prevents the problem of 
vanishing gradient. Figure 7 shows the working of a convolutional layer. The 
next layer typically, is a pooling layer also known as downsampling layer. It is 
used to reduce the dimensionality of each feature map but retains important
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in fo rm ation . T here  are  various pooling  m ethods, b u t m ostly  m ax  pooling 
is used. In  m ax  pooling, th e  la rgest elem ent in th e  fea tu re  m ap w ith in  th e  
w indow is taken . F igure  8 shows th e  m ax  pooling  opera tion .

Figure 7: Working of convolutional layer.

Figure 8: The max pooling operation f 12].

D ro p o u t layers |13| are used in CX X  as a regu la rize r3. T hey  reduce 
overfitting  by p reven ting  com plex c o -ad a p tio n s4 on tra in in g  d a ta . T he  final 
layer th a t  is used in a ty p ica l CXX is a fu lly-connected  layer. T h is layer looks 
a t th e  high-level featu res, in th e  o u tp u t from  previous layer, th a t  strong ly  
co rre la te  to  a p a rtic u la r  class. A n exam ple of a CX X  is show n in F igu re  9.

3 Regularization is a process of introducing additional information in order to solve an 
ill-posed problem or to prevent overfitting [14].

4 Co-adaptions is when two or more neurons repeatedly begin to detect the same features 
[15],
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2.2 State-of-the-art Dataset
Im ages are becom ing th e  fas tes t grow ing con ten t. D a ta se ts  are  c rea ted  using 
these  im ages to  analyze an d  find p a tte rn s . O ne of th e  earliest d a ta se ts  used 
for m achine learn ing  was p roposed  by Fei Fei Li (C hief Scien tist of A I/M L  a t 
G oogle C loud and  D irec to r of th e  S tan fo rd  A rtificial In telligence Lab an d  th e  
S tan fo rd  V ision L ab), w ho c rea ted  Im ageX et |17| - a large-scale ontology of 
im ages b u ilt upon  th e  backbone of th e  W ordX et s tru c tu re . T he  o th e r s ta te -  
o f-th e -a rt im age d a ta se ts  like M odified N ationa l In s titu te  of S ta n d a rd s  and  
Technology (M X IST )|18 | d a ta b a se  - a large d a ta b a se  of h a n d w ritte n  digits, 
P ascal V isual O b jec t C lasses (V O C ), M icrosoft C om m on O b jec ts  in C on tex t 
(C O C O ) |19|, were c rea ted  to  perfo rm  m achine learn ing  ta sk s  like im age 
classification, o b jec t localization , o b jec t recognition , sem an tic  segm en ta tion  
and  in stance  segm en ta tion . T hese d a ta se ts  w ere used in b enchm ark  m odels 
discussed in th e  following m achine learn ing  techniques.

2.3 Machine Learning Techniques
T rad itionally , im ages were learned  by S u p p o rt V ector M achines (SV M )|20| 
on a h is tog ram  of local featu res. C u rren t approaches use artific ia l neu ra l 
netw orks. W ith  th e  availab ility  of a huge am oun t of d a ta  an d  increased 
processing pow er, these  approaches have led to  hum an-like perfo rm ance in 
im age classification, facial recognition  and  im age segm entation .

Image classification: Im age classification is to  classify im ages based  on 
th e  d o m inan t o b jec t in th e  im age. I t is an  im p o rta n t and  challenging prob lem  
in th e  field on C om p u ter V ision. U sing m achine learn ing  for im age classifica-

Figure 9: Multi-layer structure for handwritten character recognition [16].
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tion saw early success in 2012, when A lex Net [11], a large and deep CNN won 
the annual ImageNet Large Seale Visual Recognition Challenge (ILSVRC)5 
with an error rate of 15,4%, Since then, variants of CNNs were produced for 
the ILSVRC and they have exceeded human accuracy, which is considered 
to lie in the 5-10% error range.

Other networks similar to Alexnet were built e.g, ZfNet [21] - a modified 
AlexNet (The network obtains more information from the training data by 
using 7 x 7 hlter instead of 11 x 11 filter in the first convolution layer) was 
the winner for ILSVRC 2013 with an error rate of 11,4%, A new network 
with Inception concept was built. Inception includes replacing conventional 
convolutional hlter with complex Liters to increase their learning abilities 
and abstraction power [22], GoogleNet [23] - a complex 22-laver network is 
based on the concept of Inception, It won the ILSVRC 2014 with an error 
rate of 6,7%,

Visual Geometry Group (University of Oxford) Network VGGNet [24] is 
a simple and effective network that uses stacks of small-kernel convolution 
instead of a large-kernel convolution network architecture. It did not win 
the ILSVRC but is popular for image classification and localization task. 
The most recent Squeeze-and-Excitation Network(SENET) [25] architecture 
with a top-5 error rate of 3,79% was developed to achieve the state-of-the-art 
accuracy on ILSVRC 2017 for classification and localization. There are many 
other networks that were built to test against various datasets.

Semantic Segmentation: Semantic segmentation is understanding the 
image at the pixel level, i.e,, each pixel of the image is labeled with the 
object class it belongs to. Here an image is trained along with the image 
mask that contains the part of the image concerned (foreground, and the 
remaining is background).

Before deep learning, approaches like TextxonForest [26] and Random 
Forest [27] based classifiers were used for semantic segmentation. Fully Con­
volutional Networks (FCN) for Semantic Segmentation [28], was the CNN 
proposed for semantic segmentation. It was a dense network without a fully 
connected layer producing segmented images. Using a CNN for segmenta­
tion was not desirable because of pooling layers in it. The pooling layers 
increase the held of view and collect the information but discard the location

5 A benchmark challenge in object category, classification and detection on hundreds of 
object categories and millions of images.
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Figure 10: U-Not encoder-decoder architecture [29].

of th e  in form ation . However, in sem antic  segm en ta tion , th e  source of th e  
in fo rm ation  is necessary, so tw o classes of netw orks evolved to  tack le  th is  
problem : O ne is an  encoder-decoder and  th e  o th e r is a C ond itional R andom  
F ield  (C R F ).

In  an  encoder-decoder netw ork, th e  encoder g radua lly  reduces th e  sp a tia l 
d im ension w ith  pooling  layers and  th e  decoder g radua lly  recovers th e  ob jec t 
de ta ils  ( th rough  th e  connection  betw een encoder an d  decoder) an d  sp a tia l di­
m ension. T h ere  are usually  sh o rt cu t connections from  encoder to  decoder to  
help  th e  decoder recover th e  o b jec t details  b e tte r . CR Fs are g raph ica l m odels 
th a t  sm oo then  segm en ta tion  by observ ing  th a t  sim ilar in tensity  pixels ten d  
to  belong to  th e  sam e class. C R F  post-p rocessing  is used afte r segm entation .

FC X  an d  SegX et |30| w ere tw o in itia l encoder-decoder a rch itec tu res. 
T hese a rch itec tu res  d id  n o t have a C R F . M ulti-Seale C on tex t A ggregation  
by D ila ted  C onvolutions |31| and  D eepL ab |32| were based  on d ila ted  convo­
lu tions th a t  perform s convolu tion  opera tio n s  w ith  a m odified (w ider) kernel. 
U -X et |29| an  encoder-decoder netw ork  w orking on a sm all num ber of b io­
m edical im ages an d  D eepL ab v3 1331 are  a few netw orks used for sem antic  
segm en ta tion . F igure  10 shows U -net encoder-decoder a rch itec tu re . I t  is a
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U-shaped network, hence the name.
Training of all the above-mentioned networks (both image classification 

and semantic segmentation) required huge datasets except U-Net, But in 
many domains very few data samples are available for training. The problem 
with a small dataset is that it leads to overfitting and reduces the accuracy 
of the network. To overcome this problem data augmentation, dropout [13] 
and transfer learning [34] were evolved.

Data Augmentation: In order to reduce overfitting caused by a small 
dataset, data enhancement techniques are used to increase the amount of 
data. Data enhancement involves adding a few geometric transformations 
like flip, rotate, shift, zoom, scale, contrast, noise and color to the original 
image dataset to increase the amount of dataset.

Transfer Learning: Transfer learning is used to take the knowledge learned 
in a model and apply it to another task. This helps to use existing networks 
without worrying about the computational power required to train the net­
work, There are three major transfer learning scenarios:

• CNN as a fixed feature extractor: In this method a CNN pretrained on 
an existing dataset is used. The last fully-connected layer is removed, 
and the remaining network is treated as a fixed feature extractor for 
the new dataset,

• Fine-tuning the CNN: This method, not only involves replacing and 
retraining the top layers of the CNN, but also fine-tuning the weights 
of the pre-trained network. All layers can be fine-tuned or a higher- 
level portion of the network is fine-tuned while keeping the earlier layers 
fixed

• Pretrained models: Since it takes time to train a CNN, some people 
release the model weights of their CNN trained on the state-of-the-art 
datasets which can be used by others on their new datasets

CNN features are more generic in the early layers and more original dataset 
specific in the later/higher layers. The selection of the transfer learning 
depends on various factors, but the size of the dataset and its similarity to 
the original dataset are the most important ones,
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• If the new dataset is small and similar to the original dataset then using 
CNN as feature extractor is beneficial to avoid overfitting.

• If the new dataset is large and similar to the original dataset then 
fine-tuning is used.

• If the new dataset is small and different from the original dataset then 
it is better to train the SVM classifier using activations from earlier 
layers.

• If the new dataset is large and different from the original dataset then 
fine-tuning partially/completely is appropriate.

Example networks like [35], [36] and [37] were successfully created using 
transfer learning.
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3 Objective
T he goal of th e  thesis is to  perfo rm  m aehine learn ing  techn iques like im age 
classification and  sem an tic  segm en ta tion  on th e  p h o to  tra n se c ts  con ta in ing  a 
specific algae species, S ilvetia C om pressa, as in F igure  11 found in tw o rocky 
in te r tid a l zones in S an ta  R osa Island  - B eaehers B ay and  Skunk P o in t,

Figure 11: Sample image of algae species - Silvetia Compressa.

T he ob jec tive  can  be defined as:

•  C onduct a  b rie f s tu d y  on different m achine learn ing  techn iques for com ­
p u te r  vision.

•  C onduct a  b rie f s tu d y  on wavs to  app ly  m achine learn ing  techniques 
on th e  given d a ta se t,

•  A nalyze th e  d a ta se t an d  app ly  im age preprocessing  requ ired  before 
app ly ing  m achine learning,

•  A pply  d a ta  au g m en ta tio n  techn iques to  increase th e  d a ta se t size,
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• Build a classifier using a convolutional neural network. For the convo­
lutional neural network, try different variations of layers and hyperpa­
rameters and compare them,

• Build a network to perform semantic segmentation using transfer learn­
ing, For segmentation, a fine-tuned U-Net model is used.
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4 D ataset
This chapter provides details about the datasets used in the current study. 
It contains information like where and how the images were captured and 
the preprocessing techniques used on the images for machine learning,

4.1 Rocky Intertidal Zone Data
The images of various species were collected from photo transects at two 
rocky intertidal zones in Santa Rosa Island - Beachers Bay and Skunk Point, 
These images were captured using an SLR camera. For capturing the images, 
eleven photo transects, each 20 m long and spaced 3 m away from one other, 
were placed in each zone, A rig of 1 mx 1 m was used to capture a single 
image and 58 such images were captured every 35 cm in order to create 65% 
overlap. The images were preferably captured during low-tide. The low tides 
in these zones were mostly during the night. Due to this many images were 
captured using flash light and with this variability in the lighting conditions 
different colors of the same species were observed.

The images contain nine different species namely Mvtilus, Silvetia Com- 
pressa, Phragmatopoma Californica, Phvllospandix, Endocladia, Ulva, An- 
thropleura Sola and Red Algae, The present study focuses on Silvetia Com- 
pressa. For classification, another species - Mvltilus was used during the 
training process. Figure 12 shows sample image of Mvtilus used during the 
training of classification model. Each image is an RGB image with a resolu­
tion of 3400x3400 approximately,

A total of 592 images having dominant species as Silvetia Compressa were 
taken. These images contain Silvetia Compressa along with other species. 
Out of the 592 images only 200 images that contain this species in abundance 
were selected for training purpose and 50 images for validation and remaining 
were used as testing datasets,

4.2 Preprocessing Data
Classification: For image classification using CNN, a huge amount of data 
is required. Since a small amount of data was available, data augmenta­
tion was used. The Im ageDataGenerator class in Keras [38] provides the 
ability to increase the size of datasets by altering the images. It has var­
ious altering parameters and the current study uses rescale, zoom^range,
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shear_range, rotation_range, vertical_flip and horizontal_flip parameters 
for training datasets. For validation datasets, only the reseale parameter 
was used.

The images have RGB coefficients in range 0-255 that are very high for 
the model to process. So rescaling i.e, multiplying the data with a fac­
tor of 1/255. is done to target values between 0 and 1, The zoom^range 
randomly zooms inside the image and the shear_ range applies a random 
shearing transformation. The rotation_ range defines the amount of rota­
tion, The vertical_flip and the horizontal_flip is for randomly flipping half 
of the images vertically and horizontally respectively. Figure 13 shows data 
augmentation of a sample image using ImageDataGenerator class in Koras,

Semantic Segmentation For semantic segmentation, annotated images 
(images containing only foreground object i.e, Silvetia Compressa) were cre­
ated, Here, out of total images only 85 images and their labels (annotated 
images) were used for training and 15 images and their labels were used for 
validation. The entire dataset was randomly split into training and validation 
dataset while training the model. Figure 14 shows an example of a labeled 
image. The left image is the original image and the right image is the image 
label containing only the region covered by Silvetia Compressa, For creating 
image labels, the Image Segmenter App in Matlab Image Processing Toolbox

Figure 12: Sample image of Mytilus.
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Figure 13: Data augmentation results. The various geometric transformations used are 
rescale, zoom, shear, rotate, horizontal flip and vertical flip.
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Figure 14: An example of annotated image. Left image is the original image and right 
image is an annotated image created using Image Segment or App. The white pixels 
indicate foreground region and black pixels indicate background region.

Figure 15: A screenshot of Image Segmenter App. The toolbox on top displays different 
tools used in the Graph-cut. The area under green scribbles represent foreground element 
and red scribbles represent background element.
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was used.
The Im age Segm enter A pp  provides many different ways to annotate 

an image. The Graph-cut method was used in the present study. Graph-cut 
is a semi-automatic segmentation technique used to annotate images into 
foreground and background elements. To mark foreground and background 
elements, lines called scribbles are drawn. Based on the scribbles, the image 
segmenter segments the images automatically.

The segmented image is a binary image with white pixels indicating fore­
ground (Silvetia Compressa) region and black pixels indicating the back­
ground region. The segmented image might have some imperfections, so 
morphological tools like dilation and erosion are used to fix the imperfec­
tions and to create a well-defined border. The segmented binary image was 
then stored and used as label while training the model. Figure 15 shows the 
working of the Graph-cut tool in the Image Segmenter App,

A total of 200 images were annotated out of which 100 were used as 
training and validation datasets and remaining were used as ground truth 
images to analyze the predicted mask of the test images. Further details 
about this are provided in Chapter 6,

21



5 M odel A rchitecture
This chapter contains details about the models used for classification and 
semantic segmentation in the present study,

5.1 Classification
For classification, a 5-layer deep CXX was created in Keras, It consists of 
four convolutional layers and a final fully connected layer. The input shape 
of the first layer is 300 x 300, the feature map is 32, having filter size of 
5 x 5 and an ReLU activation function. The other three convolutional layers 
consist of 32, 64 and 64 feature maps, A max pooling layer is used after 
each convolutional layer. Dropout layers are added to avoid overfitting. The 
model was trained and validated on two sets of images, one set containing 
Silvetia Compressa and the other set containing Mytilus, Figure 16 shows 
the model architecture used.

Figure 16: A 5-layer CNN for classifying Silvetia Compressa.
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5.2 Semantic Segmentation
For semantic segmentation, the present study uses the existing U-Net model 
architecture and performs hne-tuning, U-Net was developed to perform se­
mantic segmentation on microscopy images. As mentioned earlier, U-Net 
is an encoder-decoder architecture with skip connections. It consists of an 
encoder (contracting) path and a decoder (expansive) path. In Chapter 2, 
Section 2,3, Figure 10, the left part is the contracting path and the right part 
is the expansive path.

The left part follows a typical CNN architecture with repeated application 
of two 3 x 3 convolutional layers, each having an ReLU activation function, 
and followed bv a 3 x 3 pooling layer with the max pooling operation having 
stride6 of 2, Downsampling operations are performed in this part. Down­
sampling is a max pooling layer which is an operation that summarizes each 
neighborhood of 2 x 2 neurons with its maximum value thereby reducing the 
dimension of the data by a factor of 4,

Each step in the expansive part has two 3 x 3 convolutional layers followed 
by upsampling operations that double the output layer’s image dimension by 
repeating each neuron’s value twice. The skip connections that are used are 
operations that merge the output of last convolutional layer of each step at 
the downsampling part onto the output of convolutional layer with the same 
resolutions at the upsampling part.

The U-Net architecture was hne-tuned, as shown in Figure 17, for the 
present study as mentioned below:

• An RGB input image of size 512 x 512 was used,

• No data augmentation was performed,

• Dropout layers were added to avoid overfitting caused in small training 
datasets,

• Instead of a SGD optimizer an Adam optimizer was used,

6 A stride is defined as the number of pixels by which the filter matrix shifts over the 
input matrix while performing convolution [39],
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Figure 17: A fine-tuned U-Net architecture for performing semantic segmentation.
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6 Im plem entation
This chapter contains details about performing training on the models dis­
cussed in Chapter 5, The training was performed on a machine with an 
Operating System (OS) - Ubuntu 16,04 and a Graphical Processing Unit 
(GPU) - Nvidia GTX 1080Ti installed. Using a GPU, speeds up the training 
process. Python code running on the Keras framework with a Tensorflow 
backend was used,

Keras: Keras is a high-level neural networks Application Programming 
Interface (API), written in Python enabling fast experimentation of various 
machine learning techniques. It runs on top of either TensorFlow, Theano or 
Microsoft Cognitive Toolkit (CNTK), which are software libraries for machine 
learning, Keras provides:

• Easy and fast prototyping through user friendliness, modularity and 
extensibility,

• Support for convolutional neural networks, recurrent networks and 
their combination,

• CPU and GPU compatibility,

6.1 Classification
The data augmentation parameters were selected based on the training 
evaluation results. The training evaluation results of a model that had a 
high training and validation accuracy and a low training and validation loss 
were selected. The first try was just rescaling the data. Figure 18 shows 
the result of training without performing data augmentation. Since the data 
size was small, overfitting was experienced. Next try was using zooming, 
shearing along with rescaling, A huge difference between training and vali­
dation accuracy and losses was seen, as shown in Figure 19, So instead of 
just zooming and shearing, mirroring using horizontal and vertical flip and 
rotation were performed which gave better results as compared to the previ­
ous data augmentations. The evaluation metrics are discussed later in this 
chapter,

25



Figure 18: Results of training evaluation for classifier model without data augmentation 
where overfitting is seen. The left graph shows the accuracy vs epoch for training and 
validation datasets and the right graph shows the loss vs epoch for training and validation 
datasets.

Figure 19: Results of the training evaluation for classifier model using few data augmen­
tations. The left graph shows the accuracy vs epoch for training and validation datasets 
and the right graph shows the loss vs epoch for training and validation datasets.

R egularizes were used to  avoid overfitting . D ro p o u t layers w ith  p ro b a­
b ility  betw een 0.2 and  0.5 were evaluated . Two d ro p o u t layers w ith  p ro b ab il­
ities 0.25 and  0.5 were added . T h is enab led  cap tu rin g  m ore fea tu res  in lower 
layers b u t avoiding overfitting . A different regu lariza tion  techn ique using L2 
regularizer was also evaluated . B u t th e  evaluation  resu lts  were d ifferent from  
th e  expec ted  resu lts. F igu re  20 shows th e  tra in in g  an d  valida tion  accuracy  
and  losses o b ta in ed  using L2 regularizer. I t  was seen from  th e  figure th a t  th e  
valida tion  accuracy  was flu c tu a tin g  and  h igher th a n  th e  tra in in g  accuracy  
ind ica ting  th a t  a lo t of im p o rta n t fea tu res were d ropped  w hile tra in ing .
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Optimizers are needed to  tra in  th e  m odel an d  set th e  learn ing  ra tes. 
T h ree  different op tim izers were tried . T he  first one being  th e  s ta n d a rd  o p ti­
m izer - SG D , b u t it is no t adap tive . F igu re  21 shows th e  resu lt of using SGD 
w ith  L2 regularizer. T he  nex t try  was using R M S P rop , w hieh allows ad ap tive  
learn ing  ra tes, b u t it d id  no t give expec ted  resu lts. H ere, th e re  was a large 
difference betw een tra in in g  and  va lida tion  losses. So, A dam  op tim izer was 
used, because it gave th e  b es t resu lts  as com pared  to  th e  o th e r two, A dam  
also com putes ad ap tiv e  learn ing  ra te s  for each p a ram ete r. A dap tive  learn ing  
ra te  is know n to  give good resu lts  w ith  sparse  d a ta se ts  |40|,

Figure 20: Results of training evaluation for classifier model using L2 regularizer. The 
left graph shows the accuracy vs epoch for training and validation datasets and the right 
graph shows the loss vs epoch for training and validation datasets.

Figure 21: Results of training evaluation for classifier model using SGD with L2 regularizer. 
The left graph shows the accuracy vs epoch for training and validation datasets and the 
right graph shows the loss vs epoch for training and validation datasets.
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6.2 Semantic Segmentation
For segm en ta tion , no d a ta  au g m en ta tio n  was perform ed. T he  first try  was 
using th e  o rig inal U -X et m odel w ith o u t d ro p o u t. T he  o rig inal U -X et m odel 
used SGD  optim izer. T he  tra in in g  evaluation  resu lts  ean be  seen in F igure  
22, F rom  th e  figure, it is seen th a t  th e  tra in in g  accuracy  and  th e  valida­
tio n  accuracy  was low for sem antic  segm en ta tion . Also, th e  tra in in g  and  
valida tion  loss was high.

Figure 22: Results of training evaluation of U-Xet model using SGD optimizer and without 
dropout layer.The left graph shows the accuracy vs epoch for training and validation 
datasets and the right graph shows the loss vs epoch for training and validation datasets.

So, d ro p o u t layers were added  for th e  nex t try . T he  tra in in g  evaluation  
resu lts  ean  be seen in F igure  23, F rom  th e  figure, it is seen th a t  th e re  was 
no change in th e  tra in in g  accuracy  and  th e  valida tion  accuracy. Also, th e  
tra in in g  and  valida tion  losses are high. T h en  th e  m odifications m entioned  
earlier i.e, ad d itio n  of tw o d ro p o u t layers an d  using an  A dam  op tim izer were 
perform ed.
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Figure 23: Results of training evaluation of U-Net model using SGD optimizer and with 
dropout layer. The left graph shows the accuracy vs epoch for training and validation 
datasets and the right graph shows the loss vs epoch for training and validation datasets.

6.3 Hyperparameters
T here  are m illions of p a ram e te rs  du ring  tra in in g  an d  th ey  ean  cause th e  
CXX to  behave differently  th a n  expec ted , so h y p e rp a ram e te rs  are tu n e d  
m ethod ica lly  to  get good convergence. T he  sum m ary  of each m odel w ith  
num ber of p a ram e te rs  a t  each layer is p rov ided  in T able 1 and  Table 2.

Tabic 1: Classifier summary.

Layer (type) Output Shape Par am
e o n v 2 d _ 9  (Conv2D ) (Xone, 296, 296, 32) 2432
ac t i va t ion _  9 (A ct i va t ion) (Xone, 296, 296, 32) 0
m a x _ p o o lin g 2 d _ 7  (M axPooling2) (Xone, 148, 148, 32) 0
co n v 2 d _ 1 0  (Conv2D ) (Xone, 144, 144, 32) 25632
a c tiv a tio n ^  10 (A ctivation) (Xone, 144, 144, 32) 0
m a x _ p o o lin g 2 d _ 8  (M axPooling2) (Xone, 72, 72, 32) 0
d ro p o u t_  7 (D ropou t) (Xone, 72, 72, 32) 0
c o n v 2 d _ l l  (Conv2D ) (Xone, 68, 68, 64) 51264
a c tiv a tio n ^  11 (A ctivation) (Xone, 68, 68, 64) 0
co n v2d_12  (Conv2D ) (Xone, 64, 64, 64) 102464
a c tiv a tio n ^  12 (A ctivation) (Xone, 64, 64, 64) 0
m a x _ p o o lin g 2 d _ 9  (M axPooling2) (Xone, 32, 32, 64) 0
d ro p o u t_ 8  (D ropou t) (Xone, 32, 32, 64) 0

C on tinued  on n ex t page
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Table 1 -  con tinued  from  previous page
L a y e r  ( ty p e ) O u t p u t  S h a p e P a r a m

f la t te n _ 3  (F la tte n ) (None, 65536) 0
d e n se _ 5  (Dense) (None, 100) 6553700
d ro p o u t_ 9  (D ropou t) (None, 100) 0
d e n se _ 6  (Dense) (None, 2) 202
T o ta l param eteres: 6,735,694 
T ra inab le  pa ram ete rs : 6,735,694 
N o n -tra in ab le  pa ram ete rs : 0

Table 2: Segmentation summary

L a y e r  ( ty p e ) O u t p u t  S h a p e P a r a m

i n p u t s 2 (Inpu tL ayer) (None, 512, 512, 3) 0
co nv2d_25  (Conv2D ) (None, 512, 512, 64) 1792
co nv2d_26  (Conv2D ) (None, 512, 512, 64) 36928
m a x _ p o o lin g 2 d _ 5  (M axPooling2D ) (None, 256, 256, 64) 0
co n v 2 d _ 2 7  (Conv2D ) (None, 256, 256, 128 73856
co nv2d_28  (Conv2D ) (None, 256, 256, 128 147584
m a x _ p o o lin g 2 d _ 6  (M axPooling2D ) (None, 128, 128, 128 0
co nv2d_29  (Conv2D ) (None, 128, 128, 256 295168
co nv2d_30  (Conv2D ) (None, 128, 128, 256 590080
m a x _ p o o lin g 2 d _ 7  (M axPooling2D ) (None, 64, 64, 256) 0
conv2d_31  (Conv2D ) (None, 64, 64, 512) 1180160
co nv2d_32  (Conv2D ) (None, 64, 64, 512) 2359808
d ro p o u t_ 3  (D ropou t) (None, 64, 64, 512) 0
m a x _ p o o lin g 2 d _ 8  (M axPooling2D ) (None, 32, 32, 512) 0
co nv2d_33  (Conv2D ) (None, 32, 32, 1024) 4719616
con v 2 d _ 3 4  (Conv2D ) (None, 32, 32, 1024) 9438208
d ro p o u t_ 4  (D ropou t) (None, 32, 32, 1024) 0
u p _ sa m p lin g 2 d _ 5  (U pSam pling2D ) (None, 64, 64, 1024) 0
co nv2d_35  (Conv2D ) (None, 64, 64, 512) 2097664
m erg e _ 5  (M erge) (None, 64, 64, 1024) 0

C on tinued  on n ex t page
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Table 2 -  con tinued  from  previous page
L a y e r  ( ty p e ) O u t p u t  S h a p e P a r a m

eo nv2d_36  (Conv2D ) (None, 64, 64, 512) 4719104
eo n v 2 d _ 3 7  (Conv2D ) (None, 64, 64, 512) 2359808
u p _ sa m p lin g 2 d _ 6  (U pSam pling2D ) (None, 128, 128, 512 0
eo nv2d_38  (Conv2D ) (None, 128, 128, 256 524544
m erge 6 (M erge) (None, 128, 128, 512 0
eo nv2d_39  (Conv2D ) (None, 128, 128, 256 1179904
eo nv2d_40  (Conv2D ) (None, 128, 128, 256 590080
u p _ s a m p lin g 2 d _ 7  (U pSam pling2D ) (None, 256, 256, 256 0
eonv2d_41  (Conv2D ) (None, 256, 256, 128 131200
m e rg e _ 7  (M erge) (None, 256, 256, 256 0
eo nv2d_42  (Conv2D ) (None, 256, 256, 128 295040
eo nv2d_43  (Conv2D ) (None, 256, 256, 128 147584
u p _ sa m p lin g 2 d _ 8  (U pSam pling2D ) (None, 512, 512, 128 0
eon v 2 d _ 4 4  (Conv2D ) (None, 512, 512, 64) 32832
m erg e _ 8  (M erge) (None, 512, 512, 128 0
eo nv2d_45  (Conv2D ) (None, 512, 512, 64) 73792
eo nv2d_46  (Conv2D ) (None, 512, 512, 64) 36928
eo n v 2 d _ 4 7  (Conv2D ) (None, 512, 512, 2) 1154
eo nv2d_48  (Conv2D ) (None, 512, 512, 1) 3
T o ta l pa ram ete rs : 31,032,837 
T ra inab le  pa ram ete rs : 31,032,837 
N on-tra inab le  pa ram ete rs : 0

T u n in g  l e a r n in g  r a t e :  D ifferent approaches were tr ie d  to  tu n e  th e  hv- 
p e rp a ra m e te r , T h ro u g h  tr ia l  and  e rro r m eth o d , a  learn ing  ra te  was decided. 
For th e  tra in in g  of CN N  for classification, an  A dam  op tim izer was used w ith  
learn ing  ra te  of 1e — 5, For th e  tra in in g  o f U -N et for segm en ta tion , an  A dam  
op tim izer was used w ith  learn ing  ra te  of 1e — 4, T he  learn ing  ra te  was decided 
based  on th e  tra in in g  loss. T he  h igher learn ing  ra tes  were causing  th e  m odel 
to  converge faster, an d  th e  m odel was also overh tting . T he  tra in in g  loss was 
decreasing , and  accuracy  was increasing  w hereas th e re  was very slow change 
in va lida tion  loss an d  accuracy. T he  sm aller learn ing  ra te s  caused  th e  m odel 
to  converge very slowly and  th e  difference in th e  o p tim al tra in in g  loss w ith
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Figure 24: The accuracy and loss graph of the selected model for classification problem. 
The left graph shows the accuracy vs epoch for training and validation datasets and the 
right graph shows the loss vs epoch for training and validation datasets.

Figure 25: The accuracy and loss graph of the selected model for semantic segmentation 
problem. The left graph shows the accuracy vs epoch for training and validation datasets 
and the right graph shows the loss vs epoch for training and validation datasets.

th e  selected  learn ing  ra te  and  th e  one w ith  sm all learn ing  ra te  was sm all.
T rain ing  was carried  on u n til th e  s topp ing  c rite ria  has m et. In itia lly  

th e  number of epochs was used as a s to pp ing  c rite ria  b u t th e  m odel was 
no t tra in e d  op tim ally  i.e., tra in in g  con tinued  even afte r th e  accuracy  s ta r te d  
decreasing or loss s ta r te d  increasing. So, to  avoid th is  s itu a tio n  EarlyStopping 
class in K oras was used.

W ith  EarlyStopping. va lida tion  loss is m on ito red  and  if th e re  is no change 
or increase in th e  valida tion  loss for specified num ber of epochs th e n  th e  
tra in in g  stops. M odel checkpoint was added  to  save b es t w eights. T he  m odel 
and  w eights were saved and  used for te s tin g  th e  classifier and  segm en ta tion . 
I t to o k  5 to  6 hours to  tra in  th e  m odel for classification and  30 to  40 m ins
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to train the model for segmentation.
In classification, categorical cross entropy was used as a loss function and 

accuracy metrics were used to evaluate the model during the training process. 
Categorical cross entropy was used instead of binary cross entropy, to classify 
two classes, because the training and validation losses were very high when 
using binary cross entropy. In semantic segmentation, binary cross entropy 
was used as loss function and accuracy metrics were used to evaluate the 
model during the training process.

When training the model with training and validation datasets, it is 
important to analyze the accuracy and loss of training versus validation 
datasets. For this, a graph was plotted for both classification and segmen­
tation, Figure 24 and Figure 25 show the accuracy and loss graph of the 
selected model for classification and semantic segmentation respectively. For 
a good training model, not only the accuracy should be as high as possible 
and the loss should be as low as possible, but also the difference between 
the training and validation accuracy and loss should be as small as possible. 
From Figure 24 it is seen that the difference was more, so the trained model 
will not perform as desired whereas in Figure 25 it is seen that the difference 
was low and the performance of this model will be good.
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7 Results
This chapter consists of the results obtained after testing the model on test 
datasets and the details about how the model was evaluated. Since the model 
and best weights were saved after the training is performed, it was easier to 
test the images for classification and semantic segmentation.

Confusion m atrix  is a table that describes the performance of a classi­
fication model on the test datasets. It consists of four different combinations 
of predicted and actual values. Table 3 shows the four different combinations.

Table 3: Confusion matrix used for evaluation.

Actual Value

Predicted Value Positive
Negative

Positive
TP
FN

Negative
FP
TN

• True Positive (T P): When the predicted value is positive and the 
actual value is also positive

• False Positive (FP): When the predicted value is positive but the 
actual value is negative,

• True N egative (TN): When both, the predicted value and the actual 
value are negative,

• False N egative (FN): When the predicted value is negative but the 
actual value is positive.

This table helps to find Recall, Precision, F-score, etc. In the present study, 
precision and recall were used to evaluate the model on test datasets along 
with accuracy.

Recall: It is a measure that calculates the fraction of predicted true 
positive values over total actual positive values. The higher the recall the 
better the model. It is given by the formula:

Recall = Tp_PFN 
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Precision: I t  is a  m e a s u re  t h a t  c a lc u la te s  t h e  f r a c t io n  o f  p r e d ic te d  t r u e  
p o s i t iv e  v a lu e s  o v e r  t o t a l  p r e d ic te d  p o s i t iv e  v a lu e s . I t  is g iv e n  b y  th e  fo rm u la :

Precision = Tp+FP

Accuracy: I t  is a  m e a s u re  t h a t  c a lc u la te s  t h e  f r a c t io n  o f  p r e d ic te d  t r u e  
v a lu e s  o v e r t o t a l  p r e d ic te d  v a lu e s . I t  is g iv e n  b y  th e  fo rm u la :

Accuracy =  __ T P + TN__nuL ,a ' TP+F P +T N + F N

7.1 Classification
F o r  c la s s if ic a t io n , a  t e s t  d a t a s e t  w i th  96 im a g e s  t h a t  a re  n o t  se e n  b y  th e  
m o d e l w a s  u s e d , o u t  o f  w h ic h  60  im a g e s  c o n ta in  S i lv e t ia  C o m p re s s a  a n d  36 
c o n ta in  o th e r  sp e c ie s . T h e  im a g e s  w e re  t e s te d  u s in g  sa v e d  m o d e l w i th  9 5 ,8 2 %  
t r a in in g  a c c u ra c y  a n d  8 6 ,2 3 %  v a l id a t io n  a c c u ra c y . W h ile  t e s t in g  th e  im a g e s  
fo r  c la s s if ic a t io n , t h e  im a g e  s ize  w a s  c h a n g e d  to  t h e  s ize  o f  t h e  in p u t  d a t a  
u s e d  d u r in g  t r a in in g .  I n  t h e  p r e s e n t  s tu d y  th e  t e s t  im a g e  s ize  w a s  s e t  to  
300  x  300 , T h e s e  im a g e s  w e re  t h e n  t e s te d  u s in g  th e  predict c la s s  in  K e ra s , 

T h e  r e s u l ts  o f  t h e  t e s t  im a g e s  w e re  s to r e d  in  a  C S V  h ie . T h e  c o n fu s io n  
m a t r ix  fo r  t h e  t e s te d  im a g e s  is g iv e n  in  T a b le  4,

Table 4: Confusion matrix created after testing the classification model.

A c tu a l  V a lu e

P r e d ic te d  V a lu e
P o s it iv e
N e g a tiv e

P o s it iv e
43
17

N e g a tiv e
17
19

F ro m  th e  a b o v e  c o n fu s io n  m a t r ix ,  i t  is s e e n  t h a t  o u t  o f  60 im a g e s  c o n ­
s is t in g  S i lv e t ia  C o m p r e s s a  t h e  m o d e l w a s  a b le  t o  id e n t i fy  43  im a g e s  c o r r e c t ly  
a n d  fa ile d  t o  id e n t i fy  17 im a g e s . I t  is a lso  s e e n  t h a t  th e r e  w e re  17 im a g e s  
t h a t  t h e  m o d e l w ro n g ly  p r e d ic te d  a s  S ilv e tia ,

A  m o d e l w i th  h ig h e r  p re c is io n s  r e la te s  t o  low  fa lse  p o s i t iv e  r a te .  T h e r e ­
fo re , t h e  h ig h e r  t h e  v a lu e  o f  p re c is io n  th e  b e t t e r  t h e  m o d e l. H o w e v e r, p r e c i­
s io n  a lo n e  is n o t  e n o u g h  to  e v a lu a te  t h e  m o d e l. S o , re c a ll  w a s  a lso  u se d , A  
m o d e l w i th  low  re c a ll  r e la te s  t o  h ig h  n u m b e r  o f  fa lse  n e g a tiv e s .  T h e re fo re ,  
h ig h e r  t h e  v a lu e  o f  re c a ll  th e  b e t t e r  is t h e  m o d e l. T h e  t e s te d  m o d e l h a s  a
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precision m easure  of 0,716, recall m easure  of 0,716 and  accuracy  of 64,6% 
w hich ind ica ted  th a t  th e  classifier was no t accu ra te .

I t  was seen th a t  th e  m odel h a d  good tra in in g  an d  valida tion  accuracy  b u t 
th e  accuracy  on te s t resu lt was no t good. O n cheeking th e  im ages th a t  were 
m arked  as false positive  and  false negative it was seen th a t  th e  variab ility  in 
th e  color of S ilvetia C om pressa in th e  im ages c a p tu re d  in different ligh ting  
cond ition  affected th e  accuracy  of th e  m odel. T he  accuracy  of th e  m odel can 
be increased  if th e  m odel is tra in e d  using d a ta se t con ta in ing  a h igher num ber 
of such im ages,

7.2 Semantic Segmentation
For sem an tic  segm en ta tion  a te s t  d a ta se t of 50 im ages was used. T hese 
im ages were a n n o ta te d  m anually , an d  th e  a n n o ta te d  im ages served as g round  
t r u th  im ages for evaluation . T he  te s tin g  was perfo rm ed  using th e  m odel w ith  
tra in in g  accuracy  of 97,56 % and  valida tion  accuracy  of 95,24 % and  tra in in g  
loss of 0,098 an d  valida tion  loss of 0,152,

In itia lly  th e  te s t im ages were n o t processed  so th e  im ages th a t  were b righ t 
or tak en  using flash were no t segm ented  well. F igures 26 an d  27 show th e  
resu lts  of th e  m odel on unprocessed  te s t im ages. F igu re  26 shows th a t  for 
th e  im age tak en  under no rm al ligh ts th e  m odel segm ents properly . F igure  
27 shows th a t  for th e  im ages th a t  are b righ t, th e  m odel does no t segm ent 
properly . So, tw o processing techn iques - histogram equalization an d  adaptive 
histogram equalization (GLAHE) were tried .

Figure 26: Result of unprocessed test image. The left image is original image, center image 
is the annotated image, right image is the predicted mask.

36



Figure 27: Result of unprocessed test image. The left image is the original image, center 
image is the annotated image, right image is the predicted mask.

Figure 28: Result of test images after histogram equalization. The left image is the original 
image after histogram equalization, center image is the annotated image, right image is 
the predicted mask.

A fter try in g  h is tog ram  equaliza tion , th e  resu lts  were good. T he  m odel 
was able to  segm ent all th e  te s t im ages properly . F igure  28 shows th e  resu lts  
of th e  m odel on te s t im ages a fte r h is to g ram  equaliza tion .

A dap tive  h is tog ram  equaliza tion  (C LA H E) did a good jo b  segm enting  
m ost of th e  te s t im ages however th e  resu lts  w ith  h is tog ram  equaliza tion  were 
b e tte r . F igure  29 shows th e  resu lts  of th e  m odel on te s t im ages afte r C LA H E. 
O n com paring  th e  righ t im age of F igure  28 and  F igure  29 it is seen th a t  
th e  resu lt a fte r h is to g ram  equaliza tion  is sim ilar to  th e  g round  t r u th  im age 
(a n n o ta te d  im age).

T h ere  were som e pixels th a t  were incorrectly  segm ented  as S ilvetia Com - 
pressa, as show n in F igure  30. B u t th e  overall resu lts  of th e  segm ented  im ages 
were good. So, h is to g ram  equaliza tion  was perfo rm ed  on all th e  te s t  im ages
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Figure 29: Result of test image after adaptive histogram equalization. The left image is 
the original image after adaptive histogram equalization, center image is the annotated 
image, right image is the predicted mask.

before testing .

Figure 30: Result of test images segmented falsely in few regions. The left image is the 
original image after adaptive histogram equalization, center image is the annotated image, 
right image is the predicted mask. The predicted mask has some extra region segmented.

T he segm ented  resu lts  of these  p re-proeessed  im ages were th e n  evaluated  
by ca lcu la ting  th e  confusion m a tr ix  for each im age. U sing th e  confusion 
m a trix , Sprensen-D iee coefficient was ca lcu la ted  for each im age. T able 5 
shows th e  confusion m a tr ix  c rea ted  using th e  average coun t tru e  positive, 
tru e  negative, false positive  and  false negative p ixel values of 50 te s t im ages.

S0rensen-Dice coefficient: I t is a s ta tis tic a l m etric  used for com paring  
th e  sim ilarity  betw een tw o im ages. I t  is given by th e  form ula:

S0rensen-Dice coefficient = 2 T P + T P + F N  
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Table 5: Confusion matrix created after testing the segmentation model.

A ctual V alue

P red ic ted  V alue
Positive
N egative

P ositive
124229.1
5554.06

N egative
8827.54

123533.34

T he  average value of dice coefficients for th e  50 te s t im ages is 0.9171. T his 
value ind icates th a t  on an  average th e  p red ic ted  m ask  and  th e  a n n o ta te d  
im age are 91.71% sim ilar. T he  accuracy  for each im age was also ca lcu la ted , 
using th e  values from  confusion m a tr ix  in T able 5. T he  average accuracy  is 
94.52 % w hich is close to  th e  valida tion  accuracy.

Figure 31: The predicted mask overlapping the original image for researchers to analyze. 
The left image is original test image, the center image is the predicted mask and the right 
image is the overlapped image.

T he goal of th e  p resen t s tu d y  was to  perfo rm  ecological m on ito ring  on 
th e  assem blage of S ilvetia C om pressa. So, a CSV file was c rea ted  th a t  stores 
th e  p ercen tage  of S ilvetia C om pressa p resen t in each p red ic ted  m ask im age. 
Also, an  im age w ith  p red ic ted  m ask  overlapping  th e  o rig inal im age was cre­
a ted  so th a t  th e  researchers m on ito ring  th e  assem blage can see th e  falsely 
segm ented  and  unsegm ented  areas in th e  im age. F igure  31 shows th e  exam ple 
of p red ic ted  m ask overlapping  th e  o rig inal im age.
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8 Conclusion and Future Work
This chapter summarizes the present study and provides suggestions for fu­
ture improvements.

Conclusion: The major motivation of undertaking this work was to gain 
understanding of designing, implementing and evaluating a convolutional 
neural network. This was defined as an image classification and semantic 
segmentation problem, to identify a specific algae species - Silvetia Com- 
pressa. The present study investigated the image classification problems by 
designing a CNN, Then implementing it using Keras and evaluating it with 
different metrics. It also investigated the problem of semantic segmentation 
by fine-tuning an existing model and achieved a good accuracy.

By investigating these problems, an in-depth understanding of various 
machine learning techniques was achieved. It helped to understand how 
to tune hvperparameters, how addition of dropout layers can help reducing 
overfitting, how selecting a proper loss function can affect the accuracy and 
loss of the model. The main goal was to reduce the time required to analyze 
the images for ecological monitoring and to make it less prone to human 
error. It was achieved by creating an automated tool to find the assemblage 
of Silvetia Compressa by implementing semantic segmentation.

Future Work: The image classification model created was not as accurate 
as it should be. So an improvement can be made to the image classification 
model by using more training data, preprocessing it well for proper identifi­
cation by the machine. Improving the image quality can help the machine to 
pick features specific to a particular species and not confusing two different 
species as one.

The semantic segmentation model was able to provide good results. But 
there are a few images where it segments few pixels that do not belong to 
Silvetia Compressa, Figure 30 shows one such example. Improvements in 
training and preprocessing can be done to achieve more accurate results.

As mentioned in Chapter 4 there are other species that are present in the 
two rocky intertidal zones of Santa Rosa Island, The created models should 
be tested on the new species and a multiclass classification and segmentation 
model should be implemented to identify these species,
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