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Abstract

Central place foraging is a problem domain which consists of find­
ing and delivering resources situated throughout an unknown envi­
ronment to a singular collection depot. Foraging behaviors are the 
primary benchmark application of swarm robotics, which is the study 
of the complex group behavior that emerges from the local interac­
tions of many simple individuals. A common issue within central place 
foraging approaches is inter-robot interference, a significant detractor 
from scalable group performance. To address this problem we propose 
a novel technique for central place foraging, the Multimodal approach. 
This technique separates a preliminary search phase from collection 
behavior, locating all of the resources within the environment before 
any are picked up, storing and sharing these locations amongst all of 
the agents. This information is then used by the collecting agents in 
order to select resources in areas in which there are no other agents, 
mitigating the effect of interference. The application of this approach 
to various simulated problem formulations resulted in a significant 
performance increase as compared to a baseline approach. This lends 
to our conclusion that a separation of search and collection can lead 
to the incorporation of more advanced routing techniques that further 
improve the performance of the foraging task.
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1 Introduction

Swarm robotics is the study of the behavior that emerges from the interac­

tions occurring between large numbers of simple embodied agents and their 

environment [2]. However, technological limitations have made such systems 

infeasible until only late in the last century. Swarm robotics is a relatively 

new field, emerging in the late 1980s as ” the application of swarm intelligence 

to the study of multi-agent systems” [2]. The field is influenced heavily by 

biological systems of cells, insects, and animals that exhibit similar qualities 

to that which are trying to be replicated in these artificial systems [3]. The 

primary motivation of swarm robotics is the potential for swarms to solve 

large scale tasks that are difficult or impossible to be accomplished by single 

or small groups of agents. Additionally, swarm approaches offer scalabil­

ity, robustness, and flexibility; meaning that they should be able to tolerate 

varying environments, group sizes, and individual failure rates without com­

promising the performance of the swarm [2]. Swarm robotics has a variety of 

studied applications, including patterned/formation movement, search, and 

foraging [4].

Foraging is used as the primary benchmark for evaluating swarm behavior 

due to the combination of tasks that it requires [5]. In order to successfully 

forage, agents must search and bring resources back to a collection depot 

while avoiding one another. This thesis is concerned primarily with central 

place foraging, when there exists only one collection depot. The overall task
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of central place foraging consists of finding desired resources within an unex­

plored environment and returning them to a collection depot location. Such 

depots are common features in organizational structures to reduce the com­

plexity of sharing resources and communicating between the multiple agents 

acting within a logistical system. These depots, which are centers of activ­

ity, allow a fixed place for societal and commercial transactions as well as 

the opportunity for decisions to be distributed across chains of command. 

Common examples include ports, marketplaces, administrative capitals, as 

well as command posts. Such depots are abundant within nature, such as 

bee hives, bird nests, and anthills. The collection and delivery of resources 

to these depots therefore represents an important and useful logistical chal­

lenge for roboticists. Applications of central place foraging are found in 

exploration, land mine retrieval, as well as many other resource transporta­

tion problems [6-8]. While humans have been practicing foraging behavior 

for millenniums, encoding these practices into autonomous robotics systems 

creates many challenges.

Included amongst these challenges is the propensity of agents to get in 

each other’s way, referred to throughout this thesis as the problem of inter­

ference. This has been cited by many researching within this domain as the 

primary obstacle of approach scalability [9-11]. One of the main goals of 

swarm robotics is to create systems capable of supporting large numbers of 

agents, numbering in the hundreds or even thousands. Typically, approaches 

thus far have found a critical number of agents, an amount after which per-
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formance continually decreases, in the single digits or dozens [6,9,12]. The 

reason for this has been consistently cited as being interference. Multiple 

agents operating within a shared space leads to interference [13], and central 

place foraging in particular concentrates agents around the collection depot 

area as well as resource clusters. Despite this, there exist no established and 

efficient techniques for interference mitigation.

Central place foraging concentrates agents around the collection depot as 

well as the pathways between the depot and resources, and each additional 

agent operating within these shared spaces increases the likelihood of agents 

obstructing each other [13]. The benefits of adding a second agent to help 

the first is readily apparent, however after many such additions there is a 

consistent detrimental effect on performance. Research in this area thus far 

has shown foraging efficiency quickly decreasing in proportion to the number 

of agents trying to forage beyond small numbers of agents. [6,9,12]. Despite 

foraging seeming to be a cooperative task, work in this area so far shows that 

agents seem to function best when kept far apart. Typically foraging behavior 

occurs in the following steps: search until a resource is found, collect it, bring 

it to the depot, followed by returning to search. This means that searching 

for and finding resources is integrated with collection behavior into a singular 

process. The spontaneous discovery of resources followed by the immediate 

need to bring them back to the activity center makes it extremely difficult 

for agents to route themselves in ways that both avoid others and as well as 

prevent the wasting of time that can occur from waiting for a clear path. In
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order to effectively address the problem of congestion, we propose that search 

and collection should be separated into two distinct modes of operation rather 

than switching constantly between the two behaviors. This allows agents to 

first discover information about the environment they are working in, as 

well as the locations of the resources, and then use this information to more 

effectively route and gather.

The present work thereby provides a novel approach to central place for­

aging; which separates search and collection into two modes in order to try 

and better manage interference. Prior to agents beginning collection, a pre­

liminary search phase is used to determine the locations of the resources 

within the environment. Upon search completion, agents utilize these re­

source positions in conjunction with a sector locking congestion mitigation 

technique to efficiently collect the resources. Splitting search from collection 

allows agents to search uninterrupted in a deterministic pattern designed to 

quickly search an area of interest and use the locations gathered in the search 

phase to try and make better informed decisions about the order in which to 

collect the resources. This preliminary survey of the environment incurs an 

initial performance cost because no resources are collected until the survey is 

complete. We investigate the initial cost of such a search phase as well as its 

long term performance impact on various resource distributions. We demon­

strate that this cost becomes insignificant due to the time saved by routing 

agents directly to and from resource locations during collection, as well as 

avoiding areas where other agents are collecting. The multimodal approach
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represents a proof of concept that the separation of search and collection can 

lead to the incorporation of more advanced mitigation techniques.

The remainder of this thesis is separated into the following chapters: 

Background, Problem and Multimodal Approach, Simulation Experiments, 

and Conclusions. The Background chapter provides the context in which 

our work is situated, both in field and problem domain. It begins with a 

historical overview of swarm robotics; much of which is shared by foraging 

applications as they represent the field’s primary application. The forag­

ing problem domain is the subject of the next few sections; these discuss 

the variations in problem formulations, the primary behaviors needing to be 

accomplished by foraging agents, as well as a discussion of the approaches 

most related to our work. This provides the reader with the context neces­

sary to understand the problem formulation, and the approach described in 

the chapter of Problem and Approach. In Simulation Experiments, we de­

scribe the experiments designed to evaluate our approach as well as the data 

gathered from them. Results ends with a section analyzing this data and 

discussing their implications. The thesis is concluded with a summary of our 

findings, relating them to the aims of this thesis, described in the previous 

paragraph, as well as relating an agenda for future extension of this work.
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2 Background

2.1 Historical Overview of Swarm Robotics

The conceptualization of swarm robotics, visualized in Figure 1, began in 

the late 80s when emerging technologies, control mechanisms, and decreas­

ing hardware costs made the control of large numbers of robots seem to be 

reachable within a few years. The concept of behavior based design, one 

of the primary methodologies used in controlling swarm systems, was intro­

duced by Brooks in 1986 [14]. This new method of robot controller design 

was not only robust, but also hardware resource efficient and scalable, which 

was extremely applicable to the limited resources of early mobile robots. 

Shortly after this time the uses of large scale, decentralized, simple robotics 

applications were proposed in two separate papers [15] and [16]. In 1987, [15] 

described how “gnat robots,” could be controlled using controllers similar to 

that proposed by Brooks [14]. A year later, [16] introduced the term of ’’ cel­

lular robotics” , describing a similar decentralized and self organizing system 

of robots using only limited communication, which attempted to address “the 

absence of a theoretical framework for dealing with distributed robotic sys­

tems” [16]. While the authors of [16] primarily describe the cellular robots 

in terms of mathematical modeling and properties, [15] addresses more of 

the hardware requirements and challenges of such systems. Together these 

represent the theoretical and practical basis for swarm robotics in its earliest 

forms. These swarms differentiated themselves from the more general field of
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multi-agent systems due to their decentralized control, simple components, 

and larger number of agents involved [2].

Figure 1: The Conceptualization of Swarm Robotics

Throughout the next several years, the study of early systems of cellular 

robotics and a recognition of their relatedness to biological systems helped 

bring about the transformation of swarm robotics from the academic “buzz 

words” of cellular and gnat robotics to a substantial component of multi­

agent systems research, warranting its own study [2]. The separation of 

swarm robotics from the more general multi-agent systems seems to have 

occurred in between the early 1990s and 2000s. Throughout this time there 

existed a lack of agreement at this time as to what this area of research should 

be called, with researchers using different names such as “gnat robotics” , “cel­

lular robotics” , “collective robotics” , and “swarm robotics” [17]. In 1989, [18] 

coined the term “swarm intelligence” in order to describe the complex group 

behavior that emerges from simple individual cellular robots. While techno­

logical limitations made robotic applications in this field difficult to pursue at 

this time outside of small numbers of agents and simulation, biologists were 

quick to note the similarities between the study of social insect behavior and
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the goals of this emerging field [2]. Brook’s controller design [14] provided 

a straightforward way for biologists to encode and organize behaviors they 

observed in the lab into robotic systems. In [2] it is described that when the 

term “swarm intelligence” was introduced, it was so heavily used by biolo­

gists that the term ended up “losing much of its original robotics context” . 

This necessitated the invention of the term “swarm robotics” to differentiate 

between the natural and artificial research dealing with swarms.

Over the course of the next decade the primary area of application of 

research in swarm intelligence was centered around being able to model bio­

logical systems and determining how their interactions led to complex insect 

swarm behavior. This further tied the field to that of biological systems. 

In [3] it is described how the simple interactions of individual organisms re­

sults in societies that are robust, scalable, and flexible. Sahin uses these terms 

to describe the primary motivations of swarm robotics [2]. Any group of or­

ganisms that must interact together to achieve a common goal displays many 

of the characteristics swarm robotics seeks to achieve artificially. Throughout 

the early 1990s the field of swarm robotics systems exploded with approaches 

and ideas. In their review of cooperative robotics, Cao notes that “over the 

past 8 years (1987-1995) alone, well over 200 papers have been published in 

this field” [19]. However, Cao also notes that the field lacked a formal spec­

ification or corresponding means of discussion and that this was one of the 

areas that could be most improved. This caused Cao to note that the field 

remained very conceptual, with typical research involving new behaviors for
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the agents to perform. This provided an opportunity for biologists to have 

their behavioral observations on organisms in their research translated into 

artificial equivalents. This conceptual nature of swarm robotics research has 

produced an emphasis on producing desired individual behaviors rather than 

emergent group behavior that efficiently accomplishes the goal application.

This problem of a lack of top level design methodologies and general field 

formalization began to be addressed in the 1990s and early 2000s, visualized 

in Figure 2. In the early 90s, both [20] and [10] laid the groundwork for 

understanding how to design swarm behaviors, using Brook’s method [14] 

to engineer specific interactions to occur among the individuals and create 

desired group behavior. This represented one of the first attempts to en­

code a general process for creating emergent behaviors. This was elaborated 

on by [21], recognizing the need for swarm behavior to be consistent and 

its performance to be provable from its design. In 2004, Dorigo and Sahin 

established a set of criteria to be “used as yardsticks for measuring the de­

gree to which the term ’swarm robotics’ applies” and intended to define the 

boundary between the more general multi-agent research, and that of swarm 

robotics [17]. In summary, these criteria indicate that swarm robotics re­

search should involve the coordination of large groups (or small groups with 

purported scalability) of relatively homogeneous agents with limited sensory 

and communication capabilities [17]. While these established a means of 

identifying what constituted as swarm robotics research, refined method­

ologies for accomplishing these research programs remained undefined. In
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2005, [22] formally defined the concept of “swarm engineering,” previously 

introduced by [21], and identified the key processes needed to engineer de­

pendable swarm behavior. Namely, they called for the study of mathematical 

modeling of swarms, design methods that produce reliable emergent behav­

ior, as well as methodologies for testing and validation. A recent survey 

of swarm robotics [23] indicates that the field has continued to develop its 

design, analysis, and modeling techniques whereas “requirements analysis, 

maintenance, and performance measurement have received almost no atten­

tion” . A substantial cause of these components being ignored is the lack 

of ongoing real-world swarm robotics projects. This delays the need for a 

system of requirements analysis to be developed, because swarms so far have 

almost always been deployed in simulation, or heavily controlled environ­

ments, allowing researchers to define project requirements to the needs of 

their agents, rather than the other way around.

Figure 2: The Formalization of Swarm Robotics

Swarm robotics remains a relatively new field with many avenues of re­

search needing to be explored before it may see widespread application.
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In [23] it is plainly stated that “swarm robotics systems have never been 

used to tackle a real-world application and are still confined to the world of 

academic research” . The primary reason for this is that the body of research 

has not yet solidified, there are no consistent standards for the design of a 

swarm, nor are there clear “best” algorithms for any of its domains of appli­

cability. One barrier to research in this field is that swarm robotics continues 

to have a very high cost of entry for new researchers. While the cost of 

electronic components have decreased since the fields inception, the financial 

and time cost, as well as expertise required, of acquiring, building, coding, 

and maintaining a swarm of physical robots is still large. This and the error 

prone nature of today's hardware has led to swarm robotics research to pri­

marily be conducted in either simulation, or on smaller physical swarms in 

controlled environments [23].

2.2 Central Place Foraging

The field of swarm robotics and its benchmark problem domain share many 

motivations as well as problems with lack of formalization. Swarm robotics 

is still in the process of formalization, and is heavily inspired by biological 

systems. The design of swarm behavior often relies on high level group behav­

ior emerging from local individual interactions guided by simple controllers. 

These factors help to explain the prominence of the study of foraging within 

this field. The emphasis of biological inspiration in swarm robotics resulted 

in foraging being the testbed of swarm robotics applications. Foraging be-
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havior represents a clear combination of many swarm behaviors which make 

it ideal as a goal for swarm systems.

The goal of central place foraging agents is to find and collect desired 

resources within an unexplored environment and return them to a singular 

collection location. Brambilla et al. and Winfield both describe foraging as 

the most prominent application and benchmark for swarm robotics [5,23]. 

One of the primary areas in which swarm robotics has been thought to be 

applicable is that of space exploration, with first mention of this application 

occurring in 1989 [24]. The National Aeronautics and Space Administration 

(NASA) is particularly interested in using swarms of rovers to explore other 

planets such as Mars in search of ice [25]. If enough ice is gathered into a 

central processing area it can be separated into oxygen and hydrogen to be 

used for fuel. This objective has been translated into a national competition 

that has run between 2016-2018, eliciting foraging approaches from university 

teams [25].

One of the issues with comparing performance between central place for­

aging approaches is the lack of standard means of distributing resources 

throughout the environment. This is not a trivial problem as the use of 

different distribution types can have a large impact on the performance of 

any particular algorithm [6,9]. Some algorithms are tailored to specific dis­

tribution types, while others are intended to be more generalist. This means 

that testing can be easily imbalanced depending on the types of resource 

distributions tested upon. In addition to the number of resources distributed
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throughout the environment, the arrangement of them may also follow var­

ious patterns. Resources may be distributed using uniformly random meth­

ods, exist in clusters, or follow formulaic patterns similar to that of minerals 

in a vein. The availability of resources all over the environment that occurs 

with uniform distributions reduces the effect that the spacial separation of 

agents has on distribution of work [6]. However, natural resources rarely 

occur in uniform distributions, often occurring in clumps or veins, as noted 

in [6]. Furthermore, recruitment behaviors in nature often only occur with 

the condition of highly concentrated resources. When resources are grouped 

together, it raises the amount of work that needs to be done in that area over 

time. This typically raises the spatial density and therefore the characteristic 

interference that occurs in that area of the environment. This is supported 

by [6] which notes that “when a cluster of targets is encountered collisions 

between robots increase near the cluster” . In addition to distribution, the 

quantity of resources in the environment can impact the applicability of ap­

proaches.

Typically central place foraging environments feature exhaustible resources, 

making their availability scarcer as the foraging operation goes on, with this 

effect compounded by increases in the size of the swarm. In [9] and [6] the 

growing scarcity of resources is noted as one of the two primary obstacles to 

scalability in swarm foraging systems. It is understandable then, why studies 

seeking to focus on the long term emergent behaviors of swarms sometimes 

remove this constraint on the environment, utilizing infinite regrowing re-
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sources [12,26]. Liu et al. use renewable resources for their approach which 

attempts to maximize the energy intake of the system, modeling resources 

as energy input and agent movement as draining energy, by optimizing the 

number of active foragers within the environment [12]. Pini et al. similarly 

uses infinite resources to explore the benefit of a task partitioning strategy, 

attempting to optimize the amount of work spent on a resource each time 

it is acquired [26]. Pini et al’s environment utilizes instant regrowth upon 

resource pickup, which makes the scarcity of resources static throughout the 

foraging experiment, while Liu et al’s resources grow back over time, which 

makes resource scarcity dynamic. Both [26] and [12] limit the number of 

concurrently available resources in the environment to the order of tens or 

hundreds, but regrowth allows thousands to be collected over the course of 

the experiment.

Experiments can also involve long term collection without regrowth, sim­

ply having a large environment with thousands of exhaustible resources [9]. 

Such a configuration makes resource scarcity become a serious problem, but 

this can be a desired consequence of the system to be studied; especially when 

approaches use recruitment mechanics or return to resource pickup location. 

Both of these cause agents to travel to sites in which resources are found 

repeatedly, which would make regrowing resources highly exploitable. The 

system would probably quickly converge to agents gathering from the same 

sites again and again, giving an inaccurate representation of the natural sys­

tems intended to be replicated. It is therefore inadvisable for systems utiliz-
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ing memory or recruitment mechanisms to base their performance evaluation 

on environments with infinite resources, as this would produce unbalanced 

performance benefits that don’t necessarily reflect the true performance of 

the system on a typical central place foraging formulation. However, this 

does not mean to say that the combination of purposeful repeated gathering 

mechanisms and infinite resource sites do not warrant further study. These 

formulations could provide useful insights into the trade-off between exploita­

tion of known resource sites and exploration for new, better situated sites. 

Furthermore interference provides a limit on the number of agents that could 

successfully exploit a singular resource site at the same time, possibly neces­

sitating the need to diversify individual agents to less optimal resource loca­

tions, to achieve optimal group performance. These represent some avenues 

of research to be studied with formulations incorporating infinite resources.

This section has presented different ways of formulating the problem of 

central place foraging and various associated behaviors that attempt to solve 

it. The variety of formulations exist as a result of a lack of standard defi­

nitions as well as the ability for reduction in the scope of the problem com­

plexity and specialization to the types of interactions intended on being stud­

ied. Variations in the problem formulation that modify the environment can 

produce changes in the emergent swarm behavior as well. The behavior of 

swarms emerges not only from the behaviors of agents and the interactions 

between them, but also from agent interactions with the environment. Due 

to this characteristic, the lack of a standard problem formulation introduces
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benefits and issues in the study of central place foraging. The primary benefit 

of central place foraging lacking a strict definition or stringent requirements 

is the domain is highly adaptable to the needs and interests of the researcher. 

This has led to a wide variety of hardware systems being applied to central 

place foraging, as well as a corresponding array of swarm capabilities being 

explored. However, the same adaptability that benefits individual researchers 

creates some issues for the study of central place foraging as a whole, particu­

larly in the area of evaluation. It is generally difficult to compare approaches 

that use different formulations, and applying an approach to a different for­

mulation than originally intended produces different results. This is an open 

problem for the field of swarm robotics and central place foraging, resulting 

in difficulty of systematic comparison and evaluation, which extends beyond 

the scope of the present work.

2.3 Primary Foraging Behaviors

Behavior based swarm design is centered around the development of a lay­

ering of behaviors the agent transitions between in order to take it from 

its initial state to its ending goal state, this usually involves the use of a 

finite state machine. The behavioral design process typically begins with 

the creation of the lowest level of behaviors, which usually consist of simple 

movements and reactions to sensory data, such as turning when encounter­

ing an obstacle. High level behaviors incorporate several low level ones in 

order to accomplish more complex tasks [14]. In this way simple movement
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behaviors can be built into searching behaviors, which can be incorporated 

into controllers that can accomplish the overall foraging task.

Typically foraging behavior occurs in the following steps: search until a 

resource is found, collect it, and bring it to the collection depot [6]. The 

integration of search and collection within a single process causes knowledge 

of the environment to be gained gradually as agents collect resources. Agents 

must begin with dispersal from the place they are initialized in order to search 

for the resources. The two primary approaches to searching behavior are 

stochastic and deterministic techniques. Stochastic searches tend to move in 

a direction for some amount of time, and if nothing useful is perceived, a 

new random direction is chosen [9,27]. These types of searches can be very 

effective at distributing agents all around the environment, reducing spatial 

density with decent area coverage. However, as resources are depleted from 

the environment, finding the remaining resources takes more and more time 

with the stochastic search, because they are likely to be farther out away from 

the depot, making it less likely for the agents to get there. The behavior of 

a stochastic algorithm, the Central Place Foraging Algorithm (CPFA) [9], is 

discussed at length in the next section. Deterministic approaches follow a 

pattern that is determined before the experiment begins, usually designed to 

cover the maximal amount of area as fast as possible. The search component 

of our approach is a deterministic pattern, and so is also described in detail 

in the next chapter.

When a resource is able to be perceived by the sensors of an agent, that
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resource has now been detected. Researchers have tended to try to simplify 

resource recognition as much as possible, to concentrate on the gathering 

aspects rather than that of image recognition and analysis. Accordingly, 

in controlled experiments resources are often simple objects that are easily 

recognizable. For approaches integrating search and collection, detecting a 

resource while the agent is not already carrying a resource typically means 

that the agent will then begin the process of picking up the resource. Due 

to the wide variety of swarm physical configurations, “picking up” can mean 

different things based on the type of robot and resource being worked with. 

This pick up work varies across different problem formulations; some require a 

gripper to physically grasp the object [26,28], and in other instances a picture 

of the resource is taken by the agent's camera and this is all that is necessary 

to represent having picked up the resource [9,29]. Regardless of resource 

configuration, the resource ceases to be available within the environment, 

and becomes carried by the agent.

The amount of work required in order to pick up a resource can determine 

the applicability of certain foraging approaches. Several approaches attempt 

to distribute the movement of any particular resource between its initial loca­

tion and its delivery at the depot between multiple agents. This mechanism, 

known as task partitioning, breaks the task of delivering a resource to the 

collection depot into several subtasks. Each resource is brought back some 

distance at a time before being abandoned by that agent and picked up later 

by another. This type of partitioning helps distribute the amount of work
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along the way, having a slight staggering delivery effect similar to what was 

observed in [6] for CPFA, as well as helping prevent error prone agents from 

holding on to a resource indefinitely away from the depot. Task partition­

ing is highly dependent on the resource formulation. High amounts of work 

needed to pick up a resource can increase inter-agent interactions around ar­

eas with high numbers of resources, such as clusters. As the cost of picking up 

a resource increases, such as when needing to use grippers, approaches that 

require the picking up of each resource multiple times may lose some or all 

of their performance benefits. Furthermore, with systems utilizing the image 

based resource, these task partitioning is difficult or impossible to emulate, 

due to these resources not actually physically moving.

When a resource is detected but an agent cannot pick it up due to cur­

rently being at capacity, the resulting state of that resource depends on the 

implementation of the foraging approach. Some approaches will completely 

ignore a resource that cannot be picked up [9], making it as if the detection 

had never occurred. Other approaches may try to notify other agents of 

the resources existence at that location [30,31]. In an early work in swarm 

robotics recruitment, Sugawara and Sano use a light beacon system in order 

to have agents with an empty resource capacity attracted to those that have 

found a resource, who are holding still for a set duration before starting deliv­

ery [31]. The light beacon mechanism has also been used for attracting agents 

to the delivery location [26]. Sugawara and Sano find that their recruitment 

strategy makes the robots perform worse when resources are distributed uni-
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formly, with the attraction increasing collisions and since the resources are 

distributed uniformly the position of one resource does not in any way in­

dicate the position of another. However, when resources were placed in a 

singular cluster, the attraction mechanism was able to improve gathering 

efficiency. This corresponds to the results of both CPFA and real ant be­

havior, who only utilize recruitment strategies when resources are heavily 

clustered [9,32].

Once the resource is in the agent's possession, the agent must return to 

the collection depot location for delivery. The amount of work that this step 

requires depends on the problem formulation as well as the agent's local­

ization capabilities. For agents with error-free localization, agents are able 

to travel directly between the pickup site and the delivery location. When 

there is high noise in sensory data however, this step can be just as random a 

search as when looking for a resource. In some setups the depot has a distinc­

tive light beacon visible from any area of the environment [26]. This reduces 

the complexity of finding the collection depot and limits reliance on local­

ization. Upon finding the depot location, usually represented by something 

recognizable like a beacon or image, the agents drops off the resource and 

then resumes searching. One complication of homing behavior is that this 

is the one place in the environment which all agents must consistently go to 

in order to perform their task. This makes the interactions that occur near 

the collection depot one of the primary targets for interference mitigation 

techniques.
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Site fidelity has the agent return to the last harvest location after de­

livering a resource in order to see if there exist additional resources near 

that location before resuming search. This behavior was observed in Desert 

Harvester Ants [33] before being incorporated into DDSA [6] and CPFA [9]. 

While the usage of memory mechanisms can have a large impact on task 

performance, its incorporation is not always a straightforward decision [32]. 

In large swarms, memory requires coordination schemes to prevent agents 

from going to resources they remember but have been collected by some­

one else. At the hardware level, localization within swarm systems often 

has a high degree of noise and error, making remembered resource locations 

possibly unreliable. The usage of memory based mechanisms is therefore rec­

ommended for systems with sufficient localization as well as communication 

capabilities. Systems not incorporating site fidelity resume search behavior 

upon delivering a resource.

The totality of these behaviors are what constitute an approach to central 

place foraging. At the core of every approach are search and collection. 

Aspects of these two high level behaviors are often accentuated with the 

types of mechanisms described in this section, such as recruitment, task 

partitioning, and site fidelity. The emergent group behavior that stems from 

the operation of these individual behaviors are impacted by the formulation 

of the problem in which they operate. In the next section, we study the two 

approaches most related to ours, CPFA [9] and DDSA [6], in detail.
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2.4 Related Approaches

Foraging occurs frequently within nature, leading to many aspects of solu­

tions in this problem domain to be biologically inspired. Organisms provide a 

glimpse into how artificial swarm systems could operate under varied natural 

conditions. Ant gathering behavior has had much attention from a combina­

tion of biologists and swarm roboticists. Ants are able to accomplish complex 

foraging tasks through a variety of simple but efficient mechanisms. They are 

able to estimate their relative location to the ant hill using the distance and 

direction they have traveled [33]. Ants can also communicate resource rich 

locations through the use of pheromones. Ants initially travel in a random 

pattern until a resource or pheromone trail is found, leaving a weak trail 

of their own pheromones behind them. Once a resource is found, ants are 

able to travel between that resource and the nest repeatedly in a much more 

direct path than when initially searching, a mechanism known as site fidelity 

within swarm robotics literature [34]. This causes the pheromone trail to be 

strengthened as long as there are remaining resources in that area to be col­

lected. The areas with the most dense resources thereby have the strongest 

pheromone trails, attracting additional ants to help gather there [32]. These 

ant behaviors provide the inspiration for the Central Place Foraging Algo­

rithm [9].

The Central Place Foraging Algorithm (CPFA) is directly modeled off of 

Desert Harvester ant behavior, incorporating stochastic search, site fidelity, 

and pheromone based recruitment behaviors [9]. CPFA agents default to a
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randomized search when no pheromone trail is found to emulate ants’ initial 

search behavior. Once a resource is found, agents lay pheromones with a 

frequency and decay rate tuned by a genetic algorithm. In combination 

with a site fidelity mechanic, virtual pheromone trails leading to heavily 

clustered resources attract other agents. In the paper establishing CPFA [9], 

collisions are not modeled in the simulation, allowing swarm sizes up to 700 

agents to continue to improve overall group performance. The choice for 

collisions to be ignored in research seeking to closely emulate ant behavior 

makes sense, as ants are very small and can climb over each other with 

little inconvenience. Furthermore, eliminating collisions uncovers emergent 

behavior typically obfuscated by the powerful effect of interference. The 

authors note that “other researchers have focused on inter-agent interference 

as the main cause of sub-linear scaling (in agent performance), but we observe 

sub-linear scaling even without including collisions in the simulation” [9]. The 

sub-linear scaling to which the authors are referring to is that adding agents 

in central place foraging solutions does not produce a corresponding linear 

increase in performance in relation to the size of the swarm. This is typically 

primarily thought to be almost entirely due to the effect of interference, but 

with that eliminated, performance in relation to size of the swarm remains 

sub-linear. The authors hypothesize that this is due to the increasing distance 

of the diminishing resources, as close resources are more likely to be stumbled 

upon by the randomly searching agents [9].

In a problem domain in which the entire point is to gather resources, it

23



is counterintuitive that other agents collecting, interference aside, would be 

an issue for the individual agent. However, CPFA’s results show decreasing 

usage of recruitment behavior in proportion to the size of the swarm [9]. 

The authors note that the parameters being evolved by their genetic algo­

rithm has “the probability of laying pheromones decrease” and faster rates 

of pheromone waypoint decay in larger size swarms [9]. The reduction in 

pheromone laying rates and increase in rates of pheromone decay in larger 

size swarms indicates that the recruitment of helper agents in large swarms 

might do more harm than good. Small swarms may benefit from helper 

recruitment in order to speed up the gathering of a highly concentrated re­

source, and the lower total amount of agents in the system prevents more 

helpers discovering that trail than are actually helpful. If one looks at a sin­

gle cluster of resources as its own central place foraging subproblem, there is 

likely a small critical number of agents that would be useful to the task, as 

the optimal number decreases with number of resources. However in a large 

swarm, no such prevention occurs, causing resource competition rather than 

cooperation. When an agent is recruited to a resource that is no longer there, 

this is an occurrence of “overshoot” . This is a problem that occurs with nat­

ural recruitment behavior as well, leading to ants rarely using pheromone 

trails and instead tend to rely far more often on individual memory [32]. 

These aspects of emergent swarm behavior can be difficult to see with colli­

sions enabled, but collisions are an important issue in foraging that cannot 

be ignored when comparing approaches.
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A great deal of effort has been put into studying the characteristics and 

mitigation of inter-robot interference within multi-agent systems. In [28] 

interference is said to follow as a direct result of embodied agents operating 

within a shared environment. The authors identify interference as “the key 

stumbling block of efficient group interactions” as well as establishes its close 

relationship with spacial density [28,35]. Spacial density is the ratio of agents 

to a set space over a given time. Spatial density can be increased in a variety 

of ways including adding additional agents to the system or constraining the 

space the agents must operate in. The relationship of these factors, spacial 

density, and interference is well documented by the results of approaches to 

swarm behaviors [6,11,35]. In [11] the collection depot is identified as the 

place where spatial density is the highest and therefore where interference is 

the most pronounced. The authors describe this problem as so significant for 

their approach that despite all of the resources being found and picked up by 

the agents, they were not always able to be delivered back to the collection 

depot within the time limit due to the extreme congestion occurring at that 

location. In [6] it is explicitly stated that “crowding at the collection point 

is the main driver for degradation of performance” , and this sentiment is 

echoed by the authors of the Dual Agent Algorithm [36].

In [9] it is noted that while in simulation without collision, the approach 

was able to scale up to 700 agents efficiently, this might not be the case 

when utilizing physical robots. This data however suggests that if the cost 

of collisions was negligible, then that many central place foraging algorithms
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would have much more scalability, but the effect of collision avoidance when 

using mobile robots is actually quite significant. In [9], up to 6 physical agents 

were tested in a controlled environment that was essentially a scaled down 

version of the simulation in number of agents, environment size, and number 

of contained resources. From doing physical testing, it was apparent to the 

authors that the simulation “increasingly overestimates swarm efficiency as 

swarm size decreases” as “a result of the inter-robot interference in the real 

world that is not captured in the simulation” [9]. In order to measure the 

performance of the approach as it might work on physical agents, collisions 

needed to be taken into account. The results of CPFA when incorporating 

collision detection were provided for comparison to a later approach from the 

same lab [6], which provide a more reliable means of comparison.

The Distributed Deterministic Spiral Search Algorithm, or DDSA, aims 

to eliminate the randomness inherent to stochastic approaches by having 

agents expand outward from the collection depot in a formulaic spiral pat­

tern [6]. DDSA agents bring resources back to the depot as soon as they are 

found, and then return to the pickup location in order to resume the search. 

This deterministic algorithm has the potential to outperform a stochastic 

algorithm given proper congestion mitigation techniques. DDSA is able to 

outperform CPFA up to about 15 agents due to having a much faster aver­

age search and collection time, due to collecting the closest targets first in 

a deterministic fashion. This trend continues with increases in the number 

of resources in the environment, with the authors noting that “for each ad-
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ditional target the time for DDSA collection increases by 10.67s compared 

to 23.4s per additional target with CPFA. [6] This showcases the drawbacks 

of a stochastic search, which is inefficient at finding of far away resources 

due to the low probability of an agent reaching any particular point. CPFA 

still manages to complete the task with linear scaleup, as the authors note 

that “In the CPFA the time to find uniform targets increases exponentially 

as the number of remaining targets decreases, however the time to complete 

collection scales linearly with the number of targets” [6]. As the number of 

agents in the environment continues to scale, DDSA's performance can no 

longer keep up with CPFA’s, “due to crowding at the collection point” [6]. 

DDSAs benefit of having multiple agents retrieve the closest targets first and 

similarly distant resources thereafter is actually causing multiple agents to 

arrive at the depot at the same time. This causes the critical congestion 

around the collection location and results in an overall inability to scale to 

large numbers of agents. CPFAs stochastic nature seems to stagger deliveries 

and spatially isolate agents enough so that it continues to perform increas­

ingly well up to at least 30 agents [6]. CPFA agents spread around the map 

randomly, resulting in both a significant increase in time taken to locate and 

retrieve a resource, but providing the benefit of making it unlikely to have 

many agents delivering resources at the same time. The authors of [6] sug­

gest that the efficiency of CPFA is likely to also follow a parabola, eventually 

diminishing in performance due to the effect of interference, although this is 

not captured within the scope of their results [6].
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3 Problem and Multimodal Approach

3.1 Problem Statement

As noted in the Introduction, central place foraging consists of agents finding 

desired resources within an unexplored environment and returning them to a 

singular depot location. However, there exists no standard formulation of the 

problem. The primary constraint differentiating central place foraging from 

other application areas is the existence of the singular depot location and the 

need to gather resources from the environment. This leaves the specifics of 

the problem, including the characteristics of the environment, resources, and 

the agents largely up to the researchers. Foraging is a complicated behavior 

that requires the incorporation of many mechanisms such as communica­

tion, localization, object manipulation, and obstacle avoidance in order to 

be performed successfully. Problems within any of these sub-behaviors can 

obfuscate the interactions the researcher is intending to observe. The plas­

ticity of the problem specification allows the researcher to simplify aspects of 

these behaviors in order to better concentrate on the specific behaviors which 

are intended to be studied. This has influenced our problem specification in 

several aspects, so that interactions of the gathering behaviors can be clearly 

observed without the problems stemming from localization and object ma­

nipulation. These merited the study of a regularly shaped environment, the 

exclusion of static obstacles, the existence of minimal positional error, as well 

as resources which are transported virtually through image storage.
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We assume that we need to plan paths to coordinate a group of N dif­

ferential drive skid-steer robots to accomplish the objectives of central place 

foraging. The state of a skid-steer vehicle x can be represented by the triplet 

(xd,yd,9) G S E (2), where (xd,yd) G R2 describe the position of the vehicle 

center of gravity and 9 G S1 represents the orientation. Vehicle control input 

u G R2 is modeled as (v,u) G R2, where v is the forward velocity of the 

vehicle center of gravity and u  is the rate of change in vehicle orientation. 

Motion of the vehicle evolves according to the following kinematic equation:

x'd v cos(9)

x = yd =  / (U u) = v sin(9) . (1)

9 u

For more details on skid-steering kinematics, the authors refer you to [37].

We then assume that a control algorithm exists that, in the absence of 

obstacles, will guarantee rover traversal to the goal waypoint [37]. This 

controller is modeled by:

u =  g(xc ,  Xg) (2)

where xc G S E (2) describes the rover’s current pose, and x g G S E (2) de­

scribes the rover’s goal pose. In order to move from a current position to 

a goal location, the agent transitions between two motor stages; rotational 

and skid-steer. Upon reaching any given waypoint, the agent orients itself 

towards the general direction of the next goal location by only rotating. Once 

it falls within a tolerable theta threshold, the agent begins moving forward in
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a skid-steer stage that also allows it to course correct as necessary if it moves 

out of alignment with the goal. The combination of skid-steer and rotational 

steps allow the agent to correctly model the sharp corners necessary in a 

rectangular spiral search.

Our agents detect obstacles via three range sensors forming a cone in 

front of each agent. The middle range sensor is directly in front of the agent 

and the other two are situated 45 degrees away in either direction. This 

allows agents to determine if an obstacle is being detected in the front-left, 

front-center, or front-right, and react accordingly.

Resources are represented using the image based April Tag system [38], 

shown in Figure 3. These tags are able to be scanned by the agent’s camera, 

similar to a barcode or QR tag. This means that the resources do not actually 

physically move, and in order to be “picked up” , agents simply send a request 

to a central server with an image of the tag. This ensures that multiple 

agents do not try to deliver the same tag, a necessity as they do not actually 

get removed from the environment upon pickup or delivery. When a valid 

pickup request is received, the server stores that image as being in the sending 

agent’s inventory, with a maximum capacity of one. This represents the agent 

carrying the resource as it attempts to find the depot location. The collection 

depot region is a disk one meter in length at the center of the environment, 

shown in Figure 4. The edges of the disk is with a unique tag only found at 

that location. In order to “deliver” the resource the agent must publish an 

image of this unique depot tag, confirming to the server that it has found
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the collection depot. At this point the server removes the saved image of the 

resource from the agent’s inventory, making that resource delivered.

Figure 3: Image Based Resource in simulation provided by the University 
of New Mexico [1]
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Figure 4: Collection depot model in simulation provided by the University 
of New Mexico [1]

3.2 Multimodal Approach

The implementations of central place foraging discussed previously are both 

modeled on ant behavior, but perhaps honeybees provide a better source of 

inspiration. Bees utilize a surprisingly complex system of search and com­

munication in order to efficiently gather nectar [39]. In [40] a hive of bees is 

described as a system dynamically reacting to a complex and changing en­

vironment through a system of simple individuals leading to complex group 

behavior. This is accomplished through a system of scouts, employed work­

ers, and onlookers, gathering and retrieving nectar information and reacting 

accordingly. Scout bees first survey the area around the hive, and upon 

route completion, they are able to communicate to other bees the concen-
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tration of nectar found by means of a waggle dance [40]. The collector bees 

then are allocated appropriately to gather nectar in the most concentrated 

areas [41,42].

The Multimodal approach mixes aspects of DDSA and Honeybee behav­

ior to efficiently forage and mitigate traffic. In this approach, a preliminary 

spiral search phase is separated from the collection behavior. The isolation 

of a preliminary search phase allows agents to search uninterrupted in a de­

terministic pattern designed to quickly search an area of interest. Agents use 

the locations gathered in the search phase to try and make better informed 

decisions about which resource to collect next. This approach uses the be­

havioral based design discussed previously in Primary Foraging Behaviors, in 

order to organize the foraging task of the agents. This means that layers of 

finite state machines transition between various low level behaviors in order 

to accomplish high level actions. While the approach is designed from the 

bottom up, starting from the most basic behaviors such as movement, we 

will describe the approach from the top down. At the highest level are the 

two modes that are the namesake of the Multimodal approach; search and 

collection. All agents begin in the search mode, and once they have traversed 

the area to which they have been assigned, they transition to collection until 

the end of the task.

Agents in the search mode follow a predetermined set of waypoints in 

order to detect as many resources within the agent's field of view as possible. 

The pattern that the agents follow is therefore encoded a priori, rather than in
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reaction to the environment. Similarly to DDSA, we utilize a spiral technique, 

as a spiral configuration is optimal for maximal coverage of the given area 

in the shortest time [7]. DDSA utilizes an interlocked spiral in which the 

agents each have a singular lane the width of an agent, in which they traverse. 

Multimodal differs in this aspect by having the agents do independent spiral 

searches of ring-like layers of the environment, as seen in Figures 5 and 6. 

For more details on the formulation of the searching pattern, including the 

recurrence relation that defines it, we refer to our previous publication [29].

Figure 5: Visualization of Search Behavior
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Figure 6: Plot of agent locations for the first 350 seconds of Multimodal 
algorithm execution

The objective of an agent in search mode is to follow the set of waypoints 

in order to detect as many resources throughout the environment as possi­

ble. Detection occurs as soon as a resource falls within the camera’s field of 

view. Upon receipt of each camera frame, image processing provided by the 

April Tag library [38], occurs to locate all tags within frame, and returns a 

list of their identifiers and locations relative to the agent’s camera. When 

localization errors are minimal, this combined with the agent’s position gives 

an accurate location for that resource. This location, associated with the 

resource’s identifier, is both stored in the agent’s memory and is broadcasted 

to all other agents. This process is encoded into lines 1-3 of Algorithm 1.
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Given that the search regions cover all of the environment and are of the 

same area, when the search is complete, the location of every resource in the 

environment should be in the memory of each of the agents. It is at this 

point that the agents switch to collection mode.

Algorithm 1 Target Handler: Determines what actions to take upon seeing 
target or depot tags.

1: for <target in targets_in_view> do
2: if isUnknownTarget(target) then
3: reportDetected(target);
4: if role = =  COLLECTOR  then
5: if capacity = =  C A R R YIN G  then
6: if isHomeTag(target) then
7: isDepotSeen =  true;
8: dropOff(claimed);
9: else

10: if capacity = =  C L A IM E D  then
11: if claimed! =  target then
12: unclaim(claimed);
13: isTargetSeen =  true;
14: pickup(target);

When all of the resource locations are known and agents have the abil­

ity to travel directly to any location, the collection process for any resource 

is greatly simplified. The problem now switches from that of search, to 

something more akin to a vehicle routing problem, typically in which agents 

deliver “packages” to several known customers throughout the environment. 

The difference between this class of problems is that agents doing informed 

collection must return to the collection depot after reaching each resource 

site. Agents travel from the depot, where they just finished dropping off a
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resource, directly to the next resource site, and then return. This movement 

pattern of a straight path from the depot to resource and back again, shown 

in Figure 7, represents the minimal amount of work required to collect and 

is therefore ideal. At the individual task level, the resource that will be 

collected the fastest is the one that is currently closest to the agent. How­

ever the process of optimally selecting the next resource to collect is not as 

straightforward as it might seem. When resources are selected that are near 

each other, this can set two agents on a direct collision course (Figure 8). 

The cost of these collisions often outweigh the benefits of collect the immedi­

ately closest resource, making routing agents on non-intersecting paths more 

beneficial than putting them on individually optimal routes.

Figure 7: Ideal Collector Movement
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Figure 8: Traffic Congestion from Target Selection

In order to prevent this problem, agents utilize a sector locking algorithm 

visualized in Figure 9. The sector locking algorithm divides the environment 

into fixed angular sectors similar to slices of a pie. When the agent selects 

the next resource to collect, it is required to choose from resource locations in 

unlocked sectors. Once a resource is chosen, the sector it resides in becomes 

locked (Figure 9a). The lock continues when the agent picks up the resource 

(Figure 9b) and is only unlocked once the agent delivers the resource back to 

the depot location (Figure 9c). This algorithm ensures that a sector pathway 

between the collection depot and a resource is clear, allowing a singular agent 

to make an uninterrupted collection in that sector (Figure 7). Keeping these 

pathways free of traffic while allowing collection to occur in multiple sectors 

at once eliminates a portion of the interference problem, that which occurs 

between resources and the collection depot.
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(a) Initial Lock (b) Lock Continues (c) Unlock

Figure 9: Sector Locking Algorithm

This sector locking algorithm is encoded into various parts of the collec­

tion mode state machine, with a simplified version presented in lines 6-17 of 

Algorithm 2 and lines 4-14 of Algorithm 1. Collectors that need a target tra­

verse their list of resource locations and find the closest one that is not within 

a currently locked sector. Once this resource is chosen, it becomes claimed, 

making the sector that it resides in become locked to all other agents. The 

agents travel in mostly straight paths between the resources and the depot, 

so there is little opportunity for agents to cross sectors. If any other resource 

that can be picked up on the way to the claimed resource is encountered, that 

resource is picked up instead and the claim on the old resource is dropped for 

the time being. When the collecting agent arrives at the resource location, it 

will pick it up if seen, otherwise performing a randomized search around that 

location. This is sometimes necessary due to the camera either not picking 

up the April Tag in the current frame, or issues with localization. This type 

of search may also be performed around the depot area at the delivery stage

39



for the same reasons. After pickup, the agent returns towards the depot lo­

cation until the April Tag indicating the collection depot is seen, upon which 

point that resource is considered delivered. This relies on lines 5-8 of Target 

Handling, in Algorithm 1. The collector then repeats this process, starting 

from target selection.

While the goal of the algorithm is to avoid situations in which agents 

can collide, encounters in which agents must avoid each other still occur, 

especially around the depot location. This makes both the detection and 

capability of handling obstacles a necessity. The authors of [43] describe 

obstacle avoidance as one of the necessary low level behaviors of any multi­

agent control system, and showed a significant performance enhancement just 

by rotating on detection of an obstacle . Upon any of these detections, the 

agent stores its current goal location onto a stack, and deviates towards an 

alternative location away from the obstacle detection. Once obstacles are no 

longer detected, the agent retrieves the old goal location from the bottom of 

the obstacle waypoint stack, and resumes its interrupted search or collection 

behavior. This behavior is visualized in lines 1-5 and 18-21 in Algorithm 2.
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Algorithm 2 Collector State Machine: Determines which goal and state to
transition to._____________________________________________________________

1: if obstacle-encountered = =  true then 
2: goal =  getAlternativeLocation();
3: previous_state =  current_state;
4: obstacle_encountered =  false;
5: current_state =  OBSTACLE;
6: if current-state = =  GO-TO-TARGET  then 
7: if isTargetSeen then
8: goal =  getDepotLocation();
9: current_state =  GO_TO_DEPOT;

10: else if isGoalReached() then
11: goal =  getRandomNearbyGoal();
12: else if current-state = =  GO-TO -DEPOT  then
13: if isDepotSeen() then
14: goal =  getNextTargetGoal();
15: current_state =  GO_TO_TARGET;
16: else if isGoalReached() then
17: goal =  getRandomNearbyGoal();
18: else if current-state = =  OBSTACLE  then
19: if isGoalReached() then
20: goal =  getCurrentLocation();
21: current_state =  previous_state;
22: goTowardsGoal();

In summary, the Multimodal approach is divided into two modes: search 

and collection. Agents begin in the search phase and attempt to detect as 

many resources as possible, recording their locations in what is essentially a 

shared memory. Agents follow a deterministic set of spiral waypoints during 

this phase and when these have all been traversed, agents switch to the 

collection mode. In the second mode, agents use the resource locations in 

order to more effectively route themselves. They utilize a sector locking
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technique to claim a clear pathway between depot and resources, reducing 

the effect of interference. The following section seeks to establish how we 

measured the performance of our approach.

4 Simulation Experiments

The previous chapters in this thesis have established the issues of system­

atic evaluation of swarm approaches stemming from a lack of problem stan­

dardization and heterogeneity of swarm composition from research group to 

research group. This makes the selection of an approach for comparison 

difficult, as one must find an approach with similar agent capabilities and 

developed for a similar environment. Furthermore the specifics of algorithm 

details are not always established or publicly available. DDSA was created 

specifically to address this problem, seeking to ’’ establish itself as a baseline 

of comparison for other central place foraging algorithms” [6]. DDSA has sev­

eral properties that make it a viable baseline for our Multimodal approach. 

First, it is simple to define, with its agents executing an interlocked spiral 

search and collecting resources immediately upon collection. This is similar 

to our approach if search and collection were integrated. Secondly, DDSA 

operates within a simple, well defined environment, already described in the 

problem statement. No changes are required in the capabilities of the agents 

when running either approach. These properties are ideal for showcasing 

any performance differences from the separation of search and collection, the
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intent of this thesis.

4.1 Data Gathered

In order to compare the performances of DDSA and our Multimodal algo­

rithm, we ran foraging simulations using the ROS/Gazebo environment, a 

common robotics research platform [44]. The initial starting configurations 

for the environment in which our approach is applied is encapsulated by Fig­

ures 10 and 11. The environment in which the tests take place is a regular 

square with sides 15 meters in length, and the collection depot placed in the 

center of the square. At the edges of this square are walls outlining the area 

being observed, these and other agents are the only obstacles that agents can 

encounter. Agents are always initialized within 1 meter of the collection de­

pot location. Surrounding the agents are always 256 resources with unknown 

locations, which must be returned to the collection depot location. There 

are two types of resource distributions on which our approach was tested; 

uniform and clustered. The uniform distribution, in Figure 10, is a common 

pattern for central place foraging environments, representing individual re­

sources being randomly distributed evenly throughout the environment. In 

our uniform distribution, 256 of these individual resources are placed within 

the confines of the studied environment. A clustered distribution, in Figure 

11, reflects a kind of resource concentration often found in nature, dense 

groups of resources surrounded by empty space. For tests utilizing the clus­

tered distribution, 4 clusters of 64 resources are scattered randomly, making
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the total number of resources equal to that of the uniform tests. The up­

per time limit, 4500 seconds, was chosen based on the average amount of 

time taken for the Multimodal agents to complete collection, about an hour, 

plus 15 minutes to account for variations in performance. These tests were 

run on 25 variants of each distribution type using both DDSA and Multi­

modal approaches. Upon every execution of the primary state machine for 

either algorithm, occurring ten times a second, messages encoding portions 

of each agent’s internal state were written to data files. These messages con­

sisted of the current time since the beginning of the approach execution, the 

agent’s current position, and the number of resources known to be collected 

by the swarm. The positions of the agents were used for overhead movement 

tracking throughout the execution, producing graphs similar to those seen in 

Figure 6. The collected resource count was used for performance tracking, 

used in Figures 12 and 13.
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Figure 10: Uniform Initial Configuration

Figure 11: Clustered Initial Configuration
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Figure 12: Performance comparison of uniform distribution testing. (Mul­
timodal in blue, DDSA in red)
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Figure 13: Performance comparison of clustered distribution testing. (Mul­
timodal in blue, DDSA in red)

Figures 12 and 13 relay the overall performance of both algorithms through­

out the entire task. The y-axis represents the time since the simulation began 

whereas the x-axis is the number of targets that have been delivered to the 

collection depot. At any time, having a point higher on the graph represents 

an increase in performance in comparison to a lower point. Figure 12 con­

tains the average and 95% confidence intervals, as calculated in [45], for the 

data gathered on 25 different uniformly distributed trials, whereas Figure 

13 contains the corresponding information for the same number of clustered 

trials. In order to measure performance we chose to count the number of 

resources collected over time, a common metric within this problem domain. 

Portions of these values at the 15, 30, 45, and 60 minute marks are encoded
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into Table 1.

% Collected
15 minutes 30 minutes 45 minutes 60 minutes

Uniform Multimodal 23.1 ±  0.9 51.8 ±  1.9 76.0 ±  2.0 96.3 ±  2.1
DDSA 26.1 ±  0.6 45.8 ±  0.6 63.7 ±  0.6 78.9 ±  0.7

Clustered Multimodal 19.0 ±  1.1 49.6 ±  2.3 75.7 ±  2.9 95.2 ±  2.3
DDSA 25.5 ±  2.4 48.5 ±  3.7 67.4 ±  3.7 84.0 ±  3.6

Table 1: Percentage of Total Targets Collected after 15, 30, 45, and 60 
minutes for both Clustered and Uniform target distributions. Each entry 
shown with corresponding 95% confidence interval.

4.2 Analysis

One area of investigation for this thesis is the effect of resource distribution 

on approach performance. The results of [9] and [6] indicate that interference 

plays a key role in such performance differences. In [6], the follow up results 

on CPFA note that turning on collision in the simulation results in a reversal 

of the distribution type CPFA performs best on, from clustered to uniform. 

The authors state that this is due to the advantage of the recruitment behav­

ior being offset by “the initial time to discover a resource and the increase in 

collisions at clusters” [6,9]. We believe this is the cause of DDSA’s variability 

in performance on clustered distributions compared to uniform performance 

shown in Figure 13. Our sector locking algorithm specifically addresses these 

problems by attempting to limit cluster gathering to one agent by locking the 

sector of the environment that the cluster is contained in. This treatment of 

the cluster, one resource and one agent at a time, makes the performance of
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these distributions closer to that of uniform ones, as seen in Figure 15.

Figure 14: DDSA performance on the two resource distributions. ( Uniform 
in blue, Clustered in red)
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Figure 15: Multimodal performance on the two resource distributions. ( Uni­
form in blue, Clustered in red)

One side effect of using the image based resources, means that they are 

not disturbed during the search phase, allowing agents to drive directly over 

them without movement. This makes the initial search cost unaffected by 

resource distribution, as indicated by the shared point in which agents begin 

collection in Figure 15. This would not be the case if resources were able 

to be physically manipulated by the agents. This resource type would need 

to be traversed, otherwise possibly invalidating their recorded location. This 

traversal cost would be much higher on uniform distributions given the much 

greater rate of encounter at any given point. This problem is avoided by 

DDSA due to their property of collecting the closest targets first due to 

their expanding spiral [6]. The Multimodal approach is therefore best used
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on types of resources that can be detected without being disturbed such as 

when search is possible from the air, or if this is not the case, on environments 

with low resource density, allowing the cost of traversal to be low.

As previously described, the Multimodal approach begins with a search 

phase in which the locations of resources are recorded but none are collected 

until the search phase is complete. This differs from the typical integrated 

approaches that collect and deliver resources as soon as any are found. The 

Multimodal approach therefore begins at a performance deficit; with DDSA 

collecting during the time Multimodal agents are searching. In order for the 

Multimodal approach to be viable, the benefits of informed collection must 

outweigh this initial debt. It is therefore necessary to examine the degree to 

which the Multimodal approach falls behind DDSA during the search phase, 

visualized in Figure 16. DDSA is able to deliver its first resource in an aver­

age of 10 seconds while Multimodal takes about 360 seconds to accomplish 

the same task. This occurs due to DDSA quickly collecting nearby targets 

first, whereas Multimodal agents are only searching and recording resource 

locations. While DDSA has collected 33 out of 256 resources before Multi­

modal agents collect 1, the Multimodal agents now have a shared knowledge 

of most, if not all, of the surrounding resources. From this point on, Mul­

timodal agents are able to navigate directly to and from resource locations 

as well as avoid traffic using the sector locking algorithm. While the cost 

of search is essentially static for this problem formulation, it is by no means 

constant for any application. In addition to the effect of resource distribution
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and type discussed previously, characteristics of the environment and that of 

the swarm play key roles as well.

Figure 16: Search cost indicated by performance during the first 400 seconds 
(Multimodal in blue, DDSA in red)

At the most simplified level, the cost of the search phase is determined by 

the amount of new area all agents can detect per time unit divided by the size 

of the unknown area at the outset of the task. The size of the environment 

can require more or less traversal, whereas irregular shapes can require agents 

to cover the same ground repeatedly to detect the entire environment. The 

movement speed and detection capabilities of the agents play a role in this 

ratio as well. The faster an agent travels, the fewer frames the resource is 

within the agent's detection range, making there usually exist a speed at
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which resource detection is no longer reliable. This effect can be reduced by 

slowing down, but this increases the search time. Additional agents reduce 

the amount of area that each agent has to cover, but there exist limits to this 

as well. At a certain point adding additional agents does not increase the 

amount of new ground being covered. These combination of factors make 

search time only calculable given a very precise definition of the problem 

formulation, and even then is far more easily and accurately established 

through simulation and physical testing.

Once search is complete the location of most if not all of the resources 

are known to all of the agents. This allows for the collection of each resource 

to be a simple process of traveling to that location, picking it up, driving 

straight back to the collection depot, and dropping it off. The time to collect 

a resource, in the absence of interference, therefore scales linearly with the 

distance of that resource from depot. This is most evident from Figures 

17 and 18. Here the times for Multimodal agents to collect each additional 

resource is shown to be typically lower and with less variability than those 

of DDSA. The variability in DDSA's next collection times is due to each 

resource needing to be located before it is collected. This is most striking on 

clustered distributions, in Figure 18, where the four highest points represent 

the large amount of time spent before locating the next cluster. However, 

not shown in these graphs is the average time taken for Multimodal agents 

to collectively deliver the first resource, which is about 360 seconds. This, 

shown in Figure 19 for clustered distributions, is far greater than any other
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measurement. DDSA is able to deliver its first resource in an average of 10 

seconds while Multimodal agents take 360 seconds to accomplish the same 

task (Figure 16). Despite this starting deficit, Multimodal agents are able to 

catch up to and then surpass the performance of agents using DDSA.

Figure 17: Time between target collections on uniform distributions. (Mul­
timodal in blue, DDSA in red)
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Figure 18: Time between target collections on clustered distributions. (Mul­
timodal in blue, DDSA in red)

Figure 19: Time between target collections including Multimodal search 
phase. (Multimodal in blue, DDSA in red)

55



However both algorithms actually share the same base search and col­

lection costs, distributed over different times. DDSA and the Multimodal 

approach both perform a complete spiral search of the environment meaning 

that DDSA is paying Multimodal's initial search cost, but over the course of 

the entire task. Due to DDSA using site fidelity, it travels the same collection 

distances as Multimodal agents; from the pickup location to the collection 

depot and then back. This means that in order to collect all of the resources, 

the total sum of the search and collection times, all other factors excluded, 

are exactly the same. This hypothesis is supported by the preliminary find­

ings of using the Multimodal approach without sector locking and comparing 

it to DDSA, seen in Figure 20. Without the traffic mitigation aspect, Mul­

timodal agents would always choose the closest remaining target from the 

depot. This is essentially the same behavior as DDSA, due to its expanding 

interlocked spiral causing the collection of closest targets to the collection 

depot first. As seen in the figure the roughly equal amounts of work dis­

tributed over different times causes the performance of the Closest Target 

First version of the Multimodal approach to converge with that of DDSA's 

in the long term. The cause of the full Multimodal approach outperforming 

DDSA is therefore through the selection of its targets, via the sector locking 

mechanism. This supports our primary hypothesis; that the separation of 

search and collection, while incurring an initial performance cost, can better 

inform the collection phase, resulting in overall performance gains.
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Figure 20: Performance of Multimodal with no sector locking versus DDSA 
on 5 clustered environments (Multimodal in blue, DDSA in red)

Once the search portion is complete, Multimodal agents are able to navi­

gate directly to and from resource locations as well as avoid traffic using the 

sector locking algorithm. These logistical improvements allow Multimodal to 

catch up to DDSA in an average of 1250 seconds by collecting resources at 

a faster average rate. Once intercepting the performance of DDSA agents, 

Multimodal agents continue to widen the gap until the simulation's end (Fig­

ure 21). This is due to Multimodal continuing to collect resource at a near 

constant rate, while DDSA agents struggle to find the last remaining re­

sources at the edges of the environment, as well as time lost due to traffic 

congestion. These results indicate that the long term performance benefit 

of a preliminary search phase has the potential to far outweigh the initial 

startup cost.
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Figure 21: Long Term Performance (Multimodal in blue, DDSA in red)

5 Conclusions

The aim of this thesis was to investigate whether performance advantages 

could be gained in central place foraging from techniques that separate search 

and collection into two consecutive rather than concurrent tasks. Completing 

the search before collection begins implies a period in which no resources are 

being delivered, representing a large deficit in initial performance. However 

we hypothesized that through the usage of information gathered during the 

search phase, agents could better select targets during operation in collection 

mode that resulted in less interference, one of the primary subproblems within
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this domain. We therefore proposed the Multimodal approach that uses 

a sector locking algorithm in order to try and create clear paths between 

individual resources and the collection depot. In order to determine the 

viability of such an approach, we implemented both the Multimodal approach 

and a baseline algorithm, DDSA [6]. We next simulated agents utilizing 

these algorithms within two problem formulations used by other central place 

foraging algorithms, including DDSA. Both problem variants, uniform and 

clustered resource environments, had 25 different trials generated and tested 

on with both algorithms. Experiments consisted of agents executing their 

foraging algorithm until either all the resources were collected or a time limit 

of 4500 seconds was reached. Metrics were gathered from the internal states 

of the agents throughout each experiment, which form the basis of our results.

These results indicate that the Multimodal approach is viable for the 

application of central place foraging, at least within the specified problem 

formulations. The initial search performance debt was found to be surmount­

able by the benefits gained from more informed collection target selection. 

The Multimodal approach's performance catches up to and then surpasses 

that of DDSA's in both problem formulation before either is halfway finished 

collecting the 256 resources. The Multimodal approach represents a proof of 

concept that the separation of search and collection can lead to the incorpo­

ration of more advanced interference mitigation techniques that improve the 

overall performance of the foraging task.

The sector locking algorithm by no means claims to be the optimal target
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selection strategy. It is highly likely that there exist other selection mecha­

nisms that outperform the current Multimodal approach. However in order 

to properly design and evaluate such new mechanisms, a more systematic 

understanding of the effect of interference is required. Despite interference 

being commonly referred to as one of the primary barriers to central place 

foraging scalability, no systematic discussion and analysis of the problem has 

yet been written, nor does there exist established and efficient techniques 

for mitigation. This is the main aspect in which primarily theoretical rather 

than applied work must be done in order to proceed in an effective fashion.

Larger than the development of additional mitigation techniques is the 

overall study of informed collection. There exist a wide variety of approaches 

that could be based upon preexisting knowledge of resource locations, inde­

pendent of how they were found. In order to properly test and evaluate 

these approaches a variety of baseline approaches as well as standard prob­

lem formulations must be developed. The Closest Target First variation 

of the Multimodal algorithm represents one such appropriate baseline algo­

rithm, and the problem formulations used by this thesis, based upon those 

used in DDSA and CPFA, are also appropriate starting points. However, as 

noted throughout this thesis, differences in environment, resources, agents, 

and swarms all produce changes in emergent system behavior. These differ­

ences should be carefully studied using the baselines and controlled for in the 

development of any standard problem formulations.

Finally, this thesis could be greatly improved by the inclusion of results of
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testing on physical robotics systems. This is currently lacking due to the high 

financial and time cost associated with building and maintaining a swarm of 

physical agents. It is highly worth investigating the minimal characteristics 

and capabilities necessary for an agent to work specifically only in this prob­

lem domain. It is possible that through this minimally viable rather than 

general purpose agent type and through formulation simplification and con­

trol of the operating environment that many of these costs could be mitigated 

and large physical swarms of foraging agents could be tested upon.
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