
Channel Islands
CALIFORNIA STATE UNIVERSITY

Feasibility of Real-Time Weed Detection in
Turfgrass on an Edge Device

A Thesis Presented to

The Faculty of the Computer Science Department

In (Partial) Fulfillment

of the Requirements for the Degree

Masters of Science in Computer Science

by

Student Name:
Ricky Medrano

Advisor:
Dr. Jason Isaacs

May 2021

© 2021
Ricky Medrano
ALL RIGHTS RESERVED

APPROVED FOR MS IN COMPUTER SCIENCE

Advisor: Dr. Jason Isaacs

05/12/2021
Date

Name: Dr. Scott Feister

05/12/2021

Date

Name: Dr. Brian Thoms

05/16/2021
Date

APPROVED FOR THE UNIVERSITY

Dr. Jill Leafstedt

05/24/2021
Date

Non-Exclusive Distribution License

In order for California State University Channel Islands (CSUCI) to reproduce, translate and
distribute your submission worldwide through the CSUCI Institutional Repository, your agreement to
the following terms is necessary. The author(s) retain any copyright currently on the item as well as
the ability to submit the item to publishers or other repositories.

By signing and submitting this license, you (the author(s) or copyright owner) grants to CSUCI the
nonexclusive right to reproduce, translate (as defined below), and/or distribute your submission
(including the abstract) worldwide in print and electronic format and in any medium, including but not
limited to audio or video.

You agree that CSUCI may, without changing the content, translate the submission to any medium
or format for the purpose of preservation.

You also agree that CSUCI may keep more than one copy of this submission for purposes of
security, backup and preservation.

You represent that the submission is your original work, and that you have the right to grant the
rights contained in this license. You also represent that your submission does not, to the best of
your knowledge, infringe upon anyone's copyright. You also represent and warrant that the
submission contains no libelous or other unlawful matter and makes no improper invasion of the
privacy of any other person.

If the submission contains material for which you do not hold copyright, you represent that you have
obtained the unrestricted permission of the copyright owner to grant CSUCI the rights required by
this license, and that such third party owned material is clearly identified and acknowledged within
the text or content of the submission. You take full responsibility to obtain permission to use any
material that is not your own. This permission must be granted to you before you sign this form.

IF THE SUBMISSION IS BASED UPON WORK THAT HAS BEEN SPONSORED OR SUPPORTED
BY AN AGENCY OR ORGANIZATION OTHER THAN CSUCI, YOU REPRESENT THAT YOU
HAVE FULFILLED ANY RIGHT OF REVIEW OR OTHER OBLIGATIONS REQUIRED BY SUCH
CONTRACT OR AGREEMENT.

The CSUCI Institutional Repository will clearly identify your name(s) as the author(s) or owner(s) of
the submission, and will not make any alteration, other than as allowed by this license, to your
submission.

Feasibility of Real-Time Weed Detection in Turfgrass on an Edge Device

Title of Item

Computer Vision, Deep Learning, Object Detection, YOLO, Jetson Nano

3 to 5 keywords or phrases to describe the item

Ricky Medrano

Author(s) Name (Print)

5/17/2021

Author(s) Signature Date

This is a permitted, modified version of the Non-exclusive Distribution
License from MIT Libraries and the University of Kansas.

Feasibility of Real-Time Weed Detection in
Turfgrass on an Edge Device

Ricky Medrano

May 5, 2021

Abstract

Weed control is a challenging issue in turfgrass management. While
Precision Agriculture is robust in the literature and production, it is
lagging in the Groundskeeping industry. One area that can benefit
from Artificial Intelligence is weed management in turfgrass. Object
Detection is one of the critical tasks in state-of-the-art autonomous
systems. Recent developments in Deep Learning technology and soft
ware have allowed significant increases in detection accuracy and speed.
A combination of lightweight Convolutional Neural Network mod
els, platform-specific optimizations, and model quantization have con
tributed to the performance increase seen in object detectors. This
thesis explores multi-dimensional trade-offs in Object Detection to as
sess the feasibility of real-time weed detection on an edge device. Two
viable models were discovered that could run in real-time, at least
30FPS, on the Jetson Nano 4GB. These results imply weed detection
within turfgrass is feasible using a low-cost energy-constrained edge
device and serves as a precursor to an autonomous robotic implemen
tation.

Contents

1 Introduction 1
1.1 Motivation ... 3
1.2 Scope and Limitations ... 5
1.3 Objective and Contributions ... 6
1.4 Outline ... 7

2 Background 8
2.1 Deep Learning .. 8

2.1.1 Convolutional Neural Networks .. 9
2.1.2 Object Detection ... 10
2.1.3 YOLO ... 11
2.1.4 SSD and Faster R-CNN ... 13
2.1.5 Transfer Learning ... 14
2.1.6 Data Augmentation ... 15

2.2 CNN Performance ... 15
2.3 Real-Time Inference Speed .. 17
2.4 Object Detection Accuracy .. 18
2.5 Edge Device ... 20
2.6 Dandelions and Bermudagrass .. 22
2.7 Related Work .. 23

2.7.1 Precision Agriculture .. 24
2.7.2 Robotic Weeding ... 24
2.7.3 Plant Detection with YOLO .. 25
2.7.4 Relevant Studies ... 26

3 Methodology 28
3.1 Dataset .. 28

3.1.1 Data Collection .. 30
3.1.2 Data Preparedness and Augmentation 35

3.2 Training .. 36
3.2.1 Computation Environment .. 37
3.2.2 YOLOv4 Darknet ... 37
3.2.3 YOLOv5 Pytorch ... 39
3.2.4 TLT 3.0 ... 40

3.3 Inference .. 41

i

4 Results and Analysis 43

5 Discussion 49
5.1 Limitations ... 50
5.2 Future Work ... 51
5.3 Conclusions ... 52

References 59

ii

List of Figures

1WeedDetection...1
2 Autonomous Mowing Robot ... 2
3SustainableElectricGroundsEquipment... 4
4 Robotic Prototype Imaging Platform In The Field 7
5 Jetson Nano Specifications .. 21
6 High Quality Camera from Raspberry Pi 22
7PhotoofaDandelion.. 23
8GroundTruthLabelSizeDistribution.. 30
9 Pleasant Valley Fields ... 31
10 Camera Platform ... 32
11 Robot Prototype In The Field ... 33
12 Lighting Scheme on the Robot Prototype 34
13 Data Augmentation Example ... 36
14 Weights and Biases Developer Tools 39
15 Example Images in Dataset .. 43
16 Accuracy vs. Speed of CNNs .. 46
17 Yolov5s Predictions at 320 Resolution 48

iii

1 Introduction

Weed control is a high cost for Grounds departments at schools, public works,
and golf courses. These costs extend to manpower, weed control products,
and mechanical resources. These departments must hire dedicated weed
control specialists as well as purchase high cost herbicides that are highly
regulated. Currently, weeding is performed chemically or mechanically, both
by human intervention. Chemical spraying has potential human health haz
ards, and mechanical removal is a large investiture in labor that can be
used elsewhere on more complex tasks. The past few years have brought
advancements in Artificial Intelligence (AI) that can transform the Grounds
department, similar to what it has done for the agricultural industry. One
specific area that could benefit dramatically is weed removal. The implemen
tation of automatic weed detection, as shown in Figure 1, can be a solution to
this problem and bringing the Groundskeeping industry into a more efficient
modern technological era.

Figure 1: Detection of dandelion using Artificial Intelligence.

1

Plant recognition and detection has been one of the main focuses in preci
sion agriculture. Being able to recognize a plant is the first step in performing
intelligent decisions downstream. Technological advancements in this field
have led to lowering production costs, increasing crop yield, and improv
ing overall production efficiency. These comprehensive benefits can also be
extended to the Groundskeeping industry. Many tasks within a Grounds de
partment can be overhauled to benefit from technology. One such task that
has seen a transition to smart automation is mowing. For example, Califor
nia State University, Channel Islands (CSUCI) utilizes an autonomous robot
mower by Husqvarna to mow its playing fields, as seen in Figure 2. One
area that is lacking in technology in the Groundskeeping industry is weed
management.

Figure 2: An autonomous mowing robot used on campus at CSUCI.

In order to use intelligent solutions, it has to be deployed on hardware
that can support the high computational demands of Artificial Intelligence.
The hardware must also support a software stack capable of running AI
models. An example of this type of hardware that can solve problems out
in the field is an edge device [1]. An edge device is a single board computer

2

designed to be compact, power efficient, and specialized in its use.
The increase in computing power in edge devices has increased tremen

dously in recent years. Teamed with a high-quality camera, these devices
can process large amounts of visual data. They now can provide a balance
within the constraints of size, weight, and power (SWaP); giving rise to their
entry into the Deep Learning domain. To be realized in the public’s everyday
life, AI solutions need to achieve energy efficiency, objective accuracy, and
small form-factor. Likewise, these solutions should be fast enough to run in
real-time to be practical. While Deep Learning, a subset of AI, is solving
the recognition problem, it has had its limitations due to size and complex
ity. The Deep Learning solutions are computationally complex and require
modern hardware solutions to run effectively. They are also very memory in
tensive due to the nature of their input being images or video. These present
challenges to deploy on edge devices due to resource constraints on embed
ded hardware. What follows is the why, what, and how an edge device could
feasibly be used for weed management in the Groundskeeping industry using
Deep Learning.

1.1 Motivation

The motivation for this thesis stems from a variety of factors. My undergrad
uate degree in Biology first introduced me to the floral domain. Afterwards
I attained an internship with the National Park Service in natural resource
management. Next, I spent eight years working for the Grounds department
at CSUCI in various roles. It was here I developed a deeper understanding
of weed and horticulture management. Over the years, I noticed sustainable
practices and innovative technology were starting to creep into our daily rou
tine to assist in working more efficiently and effectively. For example, most
power equipment in the Grounds department at CSUCI is electric, like those
seen in Figure 3. I want to continue this ongoing effort of rethinking how a
Grounds department manages its efforts and introduce smart technology to
achieve these goals.

3

Figure 3: CSUCI Grounds department employing sustainable electric equip
ment.

The campus has employed a solar powered autonomous robot mower, to
cut grass at its playing fields as mentioned earlier. A conventional mower
is loud, has toxic emissions, runs on gas, and can only be operated when
an employee is available. The robotic mower is an example of innovative
thinking and smart implementation for the Grounds department. It will not
disturb classes since it is quiet, and will not contribute emissions or add to
fuel costs as it is solar-powered. It can also be run during the night or when
employees are out sick or unavailable. My goal is to provide a prototype
and Computer Vision model for a similar type of smart robot but one which
manages weeds in turfgrass.

4

The way Grounds departments manage weeds is they must still take the
time to spot spray weeds within the turfgrass of its playing fields and other
grassy areas. Spot spraying effectively saves on costs as 100% of the herbicide
is being applied to 100% of the weeds, however it has many downsides. First,
it takes a long time to walk the grassy areas, a heat safety concern on hot
days for employees in full Personal Protective Equipment (PPE) such as long
sleeve shirts, pants, masks, and heavy boots. Second, the search for weeds is
subject to human perception and error. An employee out walking a soccer
field will miss many weeds due to path navigation. Lastly, spot spraying by
an employee means that they will be subject to spray drift from wind and
splashback of the herbicide and is therefore a chemical exposure safety issue.

Grounds departments also have the option of herbigation, which is the
method of injecting herbicides through an irrigation system. Herbigation is a
speedy process and is great in weed elimination coverage as the whole grassy
area will be subject to the irrigation. The downsides of herbigation are that
it is costly to install and inject, and wasteful as no turfgrass is uniformly
covered in weeds. It is also potentially toxic to the environment and humans
- there can be significant runoff and high rates of drift as the herbicide is
being broadcast high in the air through the sprinklers.

I want to develop a solution that takes the pros of spot spraying and
herbigation and eliminates the cons while also being sustainable. Such a
solution was a smart robot framework that could identify and spray weeds
in grass that would be cost-effective, autonomous, and run off solar power.
To narrow the scope of this into a thesis, I specifically want to create a Deep
Learning model that could run in real-time on an edge device for detecting
the weedy dandelions in turfgrass. My data and results could then set the
framework for implementing an autonomous weed spraying robot. This robot
could use the detected weed results with precision microsprayers for effective
weed management in turfgrass.

1.2 Scope and Limitations

Specific constraints were used in this thesis to narrow the scope. The re
search is limited to dandelions and a commonly used type of turfgrass called
bermudagrass. The growth habits of both these plants are reflective of grow
ing in a Mediterranean climate.

This thesis is also only limited to the Computer Vision aspect of the
weeding robot. It does not provide any mechanical aspects about the robot,

5

including path navigation, localization, and power requirements. It also does
not explain how the robot would remove or kill the weed once recognized.
This thesis is to serve as the pre-cursor to all of these.

This thesis is also scoped to Deep Learning only on a Graphical Processing
Unit (GPU). While other AI-dedicated accelerator platforms exist, such as a
Tensor Processing Unit (TPU) or Field-programmable Gate Array (FPGA),
for now they have limited flexibility in the types of Deep Learning models
they can support.

Lastly, due to time constraints, only one edge device will be examined.
However, many Deep Learning models types and sizes were reviewed on this
edge device to provide justifiable comparisons.

1.3 Objective and Contributions

The overall objective of this research is to investigate the feasibility of using
a low-cost edge device for detecting dandelions within turfgrass in real-time.
Recently in 2019, [2] concludes that real-time detection, meaning at least
30FPS, of broadleaf weeds in turfgrass is a prerequisite for site-specific man
agement of weeds such as the dandelion. The edge device can run on a
prototype robot that performs detection in the field without using the cloud.
The AI model can be optimized to run in real-time and on an edge device with
integration of a camera system. My specific contributions to the research are:

1) Provide a prototype robotic framework conducive to collecting in-situ
images of dandelions and other weeds in turfgrass.

2) Perform comparative experiments by training optimized state-of-the-
art lightweight Object Detection models that discriminate dandelions from
bermudagrass, using fair comparison guidelines. These models would train
on self-acquired data, as seen in . Figure 4

3) Evaluate for real-time inferencing speed of each neural network on the
NVIDIA Jetson Nano 4GB edge device, and elucidate a feasible model that
is optimized based on accuracy and speed.

The work performed in this thesis will be beneficial to future Deep Learn
ing studies investigating the feasibility of deployment on edge devices. This
thesis can also assist in providing a Deep Learning framework meant for
research to those exploring private avenues of weed detection in precision
agriculture and turfgrass management where price, power, and deployability
are of concern.

6

In this thesis, the research question I am asking is: Can an edge device
such as a Jetson Nano 4GB detect dandelions in bermudagrass with a mAP
of at least 85% and a real-time detection speed of at least 30 FPS?

Figure 4: Collecting images in the field.

1.4 Outline

The rest of the thesis is structured as follows: I cover necessary background
material about subsets of AI, edge device justification, and plant details. In
the Methodology chapter, including how I trained, deployed, and evaluated
each AI model. Next, the Results chapter will show key tables and figures
of my findings, including analysis. Lastly, I reiterate the overall thesis aim,
highlight key conclusions, expound on problems faced, and discuss future
work.

7

2 Background

This chapter gives a summary of the many sub-fields this research is built
upon. These include Deep Learning, Convolutional Neural Networks (CNN),
Object Detection, and performing inference. It concludes with a quick sum
mary about dandelions and bermudagrass, and related work in the literature.

Despite their exponential increase in computing capacity and memory,
computers still have trouble with performing the most basic human tasks
such as object and speech recognition. The brain is unrivaled in its ability
to process visual and speech data. For example, while a human can easily
discern the events unfolding before them in normal everyday conversation, a
computer can struggle to identify basic objects in the scene.

The way a computer begins recognizing objects is by taking an image
as input. An image is simply an array of numbers in a specific order to a
computer. A computer will then perform some particular operation on those
numbers and follow an algorithm to classify an object or objects existing in
the image. It can not only tell you what object it detects but where exactly
they are too. For example, autonomous vehicles use on-board computers and
cameras to detect objects in its environment.

Under the umbrella of Artificial Intelligence in Computer Science is a field
called Machine Learning. In Machine Learning, models are trained with data
to complete tasks without explicitly being told how to specifically complete
the task. These models can be trained with data that is labeled so the model
knows what the correct answer is and is referred to as Supervised Learning.

2.1 Deep Learning

A subset of Machine Learning that grew within the field is Deep Learning.
Deep Learning allows complicated problems to be solved with large amounts
of data using artificial neural networks. It is inspired by the functionality
of the brain, where its neurons are modeled by artificial neural networks
(ANN). Deep Learning has been used in optical character recognition [3],
object detection in self-driving cars [4], and forecasting financial trends [5].

Deep Learning came about when using multiple layers in an artificial neu
ral network (ANN) was developed. While Deep Learning has been around
for decades, it did not start to take root and be widely used until the 2000s.
In the early 2000s, Computer Vision tasks relied on traditional Machine
Learning approaches such as hand-picked features from Gabor Filters that

8

were discriminated against with Support Vector Machines (SVM) [6]. Deep
Learning with images resurfaced in 2012 with the creation of AlexNet and its
infamous win of the 2012 ImageNet LSVRC-2012 competition by a substan
tial margin [7], beating all other state-of-the-art traditional image classifiers
at the time. AlexNet was able to excel and win as it finally had an enormous
data source with ImageNet. It was optimized to perform matrix calcula
tions within a Graphical Processing Unit (GPU), and no longer relied on
hand-engineered features picked from classical Computer Vision algorithms.
This the main reason Deep Learning was chosen for Object Detection over
classical methods in this thesis.

The way Deep Learning detects objects is the computer will train an ar
tificial neural network on a sufficiently large dataset consisting of images and
labels. It will constantly provide feedback of its current performance through
a backpropagation algorithm, at which point it will adjust its parameters to
increase its accuracy by identifying which features are most important in
an image. This Supervised Learning happens by minimizing the cost func
tion and adjusting the ANN weights so accuracy starts to increase and loss
eventually converges.

2.1.1 Convolutional Neural Networks

A special type of artificial neural network used in Computer Vision is called
a convolutional neural network (CNN). A CNN uses an image or video frame
as input and performs convolutional operations with filters. These filters are
referred to as the weights of a CNN. The output of convolutional operations
on the image creates feature maps to be passed onto subsequent layers in the
network.

CNNs are used in 3 domains of Computer Vision: Image Classification,
Object Detection, and Semantic Segmentation. Image Classification is the
process of giving a label to a picture in an attempt to classify what is in
the scene. For example, a classification model could be fed a picture of the
beach, and it could output the label ”sand”. There is also a confidence score
between 0 and 1 for how confident the model is in assigning that label. While
Image Classification helps classify what is contained in an image, Object De
tection adds an extra step of localizing objects in the image with the use
of bounding boxes. Not only can multiple objects be detected, but multi
ple different types of objects can be detected. A popular research area in
Object Detection currently is in driverless Artifical Intelligence. A driverless

9

car must be able to take in multiple objects simultaneously and make in
telligent decisions on how to drive the car. Finally, Semantic Segmentation,
also known as Object Segmentation, takes Image Classification and Object
Detection one step further by producing a pixel-wise mask for each object
detected in addition to generation of bounding boxes, labels, and confidence
scores. A pixel-wise mask is simply a mask of an object where its boundary
is at the pixel level. This localization at such a fine-grain is helpful for satel
lite imagery, precise decision-making in autonomous driving, and medical
imaging. The precision required for detecting dandelions in turfgrass for this
thesis is conducive to using Object Detection instead of Semantic Segmenta
tion. This is because Semantic Segmentation requires more calculations for
its output and therefore would be slower than Object Detection.

2.1.2 Object Detection

Object Detection is the process of combining recognition with localization
in a picture or video. Object Detection plays a significant role in Computer
Vision objectives and has been around for the last two decades. Localizing
of objects is a crucial task in many applications such as autonomous driving,
smart robotics, and video surveillance.

The groundwork for Object Detection was first realized with the Viola-
Jones face detection framework in 2001 [8]. The algorithm used a simple
approach for Object Detection by using sliding windows of different scales
traversing all parts of the image. Next came the use of refined Histogram
of Oriented Gradients (HOG) as a feature descriptor in localizing objects
[9]. These early object detectors used handcrafted features and were based
on Machine Learning. The traditional object detectors peaked when the
Deformable Part-based Model (DPM) detector won the VOC-07, VOC-08,
and VOC-09 detection competitions [10]. These competitions were used by
many researchers to test the performance of their detectors at the time.

Object Detection finally entered the Deep Learning realm with a single
convolutional network in 2014 with OverFeat [11]. The authors used a multi
scale sliding window approach and a greedy algorithm to aggregate bounding
boxes to increase detection confidence. In addition, they had to attach a
regression network at the top of their model in order to predict bounding
box coordinates. Their work resulted in winning the ImageNet Large Scale
Visual Recognition Challenge 2013 (ILSVRC2013).

With CNNs, Object Detection initially used a two-stage method. In the

10

first stage, it would generate region proposals. In the second stage, it would
classify each proposed region if the response is strong enough. Finally, there
are post-processing steps of refining bounding boxes, eliminating duplicate
detections, and re-scoring boxes based on other objects in the image. This
two-stage method has been employed by well-known R-CNN [12], Fast R-
CNN [13], and Faster R-CNN [14] models where the R stands for ”Region-
Based”. In Object Detection, each detector has a backbone. Many feature
extraction networks exist that can serve as the backbone.

Next came single-stage methods for Objection Detection with Single Shot
MultiBox Detector (SSD) [15] and You Only Look Once (YOLO) [16]. These
algorithms combine the localization and classification of objects all in one
step creating a unified end-to-end learning framework. YOLO was seminal
in the field of Object Detection due to reframing it as a single regression
problem as going straight from image pixels to bounding box coordinates
and class probabilities. While single-stage architectures have shown to be
much faster at inference, they have exhibited lower accuracy compared to
their two-stage counterparts [17].

The most recent type of object detectors are called Anchor-free. One is
sue is that they provide less flexibility to leverage large-scale data. Examples
of Anchor-free detectors are CornerNet [18], CenterNet [19], Fully Convo
lutional One-Stage Object Detection [20], and Bottom-up Object Detection
[21].

2.1.3 YOLO

YOLO, known as You-Only-Look-Once, is a singular neural network that pre
dicts bounding boxes and class probabilities in one evaluation [16]. YOLO
was the first one-stage object detector in the Deep Learning era [22]. While
offering state-of-the-art inferencing times, the original YOLO suffered in ac
curacy compared to two-stage detectors such as Faster R-CNN.

The initial implementation of YOLO works by dividing an image into
an S x S grid where each grid cell is responsible for predicting B bounding
boxes and confidence scores. It uses Darknet as the feature extractor part of
its backbone [16]. The author also created a faster version of YOLO called
Fast YOLO which simply used fewer convolutional layers and fewer filters
for those layers.

Since 2016, more iterations of YOLO have evolved. The major drawback
of original YOLO was that it made a significant number of localization errors

11

and suffered low recall. YOLOv2 introduced batch normalization, variable
resolution input, anchor boxes, fine-grained features, and an updated Dark-
net backbone [17].

YOLOv3 improved upon YOLOv2 with a better feature extractor, Darknet-
53, as well as using a logistic classifier to calculate the probability of an ob
ject belonging to a specific class instead of a softmax function [23]. This
change was made to remove the assumption each output only belongs to a
single class. Another improvement was changing the last part of the loss
function from Mean Squared Error (MSE) to a cross-entropy loss function .
These improvements led to similar mean Average Precision (mAP) scores as
Single-Shot Detector (SSD) but were 3 times faster on the Common Objects
in Context (COCO) dataset [23]. COCO is a large-scale Object Detection
dataset used by many researchers to assess their model’s performance.

YOLOv4 was able to further improve accuracy and detection speed by us
ing the CSP (Cross-stage Partial Network) approach of scaling their network
[24]. Scaling a network typically involves deepening it by adding more layers
or widening by adding more convolutional filters. This approach can lead
to higher accuracy but comes at the expense of more computation time, re
sulting in slower inference. YOLOv4 was scaled through the CSP approach,
which partitions the backbone into two parts then merges them back through
a cross-stage hierarchy [25]. In addition, it has label smoothing, dynamic
mini-batch size for random shapes, grouped convolution, sigmoid scaling,
and a new “mish” activation. For data augmentation, it allows one to use
Mosaic, CutMix, or MixUp. It is important to point out that the most sig
nificant gains of YOLOv4 over YOLOv3 come from accuracy improvements.
Speed saw only minimal gains in YOLOv4.

YOLOv5 was introduced in May 2020 by Glenn Jocher, only one month
after YOLOv4 [26]. Jocher was not an original author of YOLO but did
provide the mosaic data augmentation technique to YOLOv4. YOLOv5 was
created to improve accessibility, faster training, faster inference, and easier
deployability. Unlike the previous iterations of YOLO, which were compiled
with the Darknet framework, YOLOv5 is implemented in PyTorch. Moving
to PyTorch was one of the biggest factors in YOLOv5 being easier to set up
and configure, whereas Darknet can have many complicated dependencies
and is less production-ready. Moreover, YOLOv5 trains much faster due to
the PyTorch ecosystem being a more established research framework and
using the Python programming language.

YOLOv5 also implements the CSP approach in its network architecture.

12

It uses PANet for its neck to generate feature pyramids. In an object detector,
the neck is where feature maps are collected from different stages. Feature
pyramids assist models in generalizing objects at varying scales. This trans
lates to better performance when detecting objects on unseen data. The
detection head of the network stayed the same as the one used in YOLOv4
and YOLOv3. It utilizes the Leaky ReLU activation function throughout
the network. Anchor boxes are auto-learned based on the distribution of
bounding boxes in the custom dataset.

YOLOv5 uses a cosine learning rate (LR) scheduler. Learning rate adjust
ments are critical in training Deep Learning models. Traditionally learning
rate is updated through a step decay in the training process. The issue with
this is that these steps are the same at the beginning and the end of training.
A cosine learning rate scheduler will take larger steps in the beginning to ap
proach local minima faster, but over the training will gradually decrease as
not to cause divergent behavior in the loss function. This cosine decay in the
learning rate helps improve accuracy [27]. All these features make it a CNN
worth testing in finding a feasible detector that can run on an edge device in
real-time.

Currently, YOLOv5 suffers from a couple of drawbacks. It is still under
active development and can potentially be buggy as the author is still testing
new code and fixing old code. It borrowed the ”YOLO” moniker and iter
ated its version to 5, which was not looked upon favorably in the research
community as Glenn Jocher is not an original YOLO author, nor has he pub
lished a paper on YOLOv5. Lastly, YOLOv5 is a port of YOLOv4 but with
a handful of questionable novel improvements that would garner its iterated
title.

2.1.4 SSD and Faster R-CNN

Single Shot MultiBox Detector (SSD) was the second one-stage object detec
tor to emerge from the Deep Learning era. SSD introduced multi-resolution
and multi-reference techniques which significantly increased detection accu
racy over YOLO at the time. When SSD premiered in 2016, it boasted a
74.3% mAP on the VOC2007 dataset along with a real-time inference speed
of 59 FPS on an NVIDIA Titan X [15].

The backbone of SSD is MobileNetV2, a high-performing feature extrac
tor. At the top of the SSD detector are convolutional feature layers decreasing
in size which all allow for predictions. This is different than YOLO which

13

only operates on a single scale feature map. Similar to YOLOv3 and Faster
R-CNN, SSD uses anchor boxes to predict bounding box offsets and per-class
scores. SSD stands out from those other two detectors in that it applies these
default anchor boxes to several feature maps of different resolutions, with the
intent of making their detector scale-invariant.

An area that SSD struggles in performance is on smaller objects. This is
due to small objects having no representations on the smallest convolutional
layers at the top of the detector. Even with this shortfall, SSD is still a very
attractive object detector due to its balance of accuracy and speed. It can
offer real-time inference at state-of-the-art accuracy, making it an easy choice
to test weed detection in this thesis.

The R-CNN model was influential in serving as the base for object detec
tors that came after it. R-CNN would first extract proposals with a selective
search, then extra features with a feature extraction backbone, and lastly
classify using a Support Vector Machine (SVM) [12]. Fast R-CNN improved
the speed of R-CNN by combining the extraction of features and classification
all in a single CNN [13]. Faster R-CNN used a more sophisticated approach
by using a novel Region Proposal Network (RPN) that discarded the use of
time-intensive selective search, thus improving speed. Despite these improve
ments, it still suffered from the high computational overhead of its RPN [14].
Its 2 stages give it superior accuracy but comes at the expense of detection
speed as more computation is required.

2.1.5 Transfer Learning

It is common for Deep Learning-based object detectors first to be pre-trained
on large datasets such as ImageNet [7] or COCO [28]. The reasons for this
are a) data collection and labeling can be out of scope and time frame for
many research projects, b) generalization is improved using a pre-trained
network, and c) it cuts down training time as many features were already
learned elsewhere.

The process of using a pre-trained network and then retraining it based
on newly introduced classes is called Transfer Learning. Specifically, Transfer
Learning is achieved in Object Detection by importing the weights that were
optimized on another dataset. The model architecture used to train, for
example on MS COCO, must be the same architecture for the model that
will be used for Transfer Learning. Not all the weights have to be used. For
example, only the weights from the first 10 convolutional layers of a YOLO

14

model can be frozen and imported into a subsequent new untrained YOLO
model.

2.1.6 Data Augmentation

Data augmentation is the process of artificially increasing the amount of
data to make a more robust model that is less susceptible to overfitting and
making it more accurate. It is a data analysis technique that either creates
slightly modified copies of the data or newly created synthetic copies.

For Object Detection, data augmentation means adding more images or
video frames to increase the size of the dataset, specifically images used in
training. The reason to create augmented images is that it is impossible
to capture images that are genuinely reflective of all the real-world scenar
ios that a CNN is trying to solve. Typical image augmentations would be
adding rotations, flips, changing color scale, and blurring. The authors in
[15] were able to see an 8.8% improvement in mAP, a common accuracy met
ric in Object Detection, when training their model using data augmentation
techniques.

2.2 CNN Performance

Convolutional Neural Networks consist of many layers, with most of them
being convolutional layers. Each of these convolutional layers will have k
kernels, also known as weights. A kernel is simply a filter that is used to
extract features from the input image using convolutions. The kernel slides
over the image performing the dot product within each sub-region of input
values. Each of these kernels will be of varying sizes with a width (w) and
height (h). The convolutional layer can then transform the input image with
width (W) and height (H) and number of channels (C) into W x H x k
dimensions. The kernels can be calculated individually and simultaneously.
This is the reason GPUs are the preferred processor with CNNs as they
benefit from the GPU’s powerful parallel processing abilities, seeing order-of-
magnitude improvements over CPUs [1]. This leads to a decrease in training
time and increase in inferencing speed from the convolutional layers. This
parallelization is what becomes a deciding factor in choosing an edge device
to deploy the trained model to. This is because each edge device will have
different underlying architecture where some are more beneficial than others
for performing Object Detection. The Jetson Nano, for example, can process

15

up to 128 kernels in parallel before seeing any significant reduction in frames
per second (FPS) [29].

CNNs can have very high accuracy but it comes at the cost of higher
computational complexity, which requires a high-performance GPU. This
increased accuracy comes from an increase in the number of convolutional
layers and kernels, thus making the network deeper and more complex. More
convolutional layers and kernels allow the model to learn more discrimina
tive features of the image and therefore be able to detect objects more pre
cisely. However, this increase in complexity of the model means an increase
in weights and number of calculations needed to do one forward pass through
the network to detect an object. As edge devices lack the performance of a
standard high-end GPU such as the NVIDIA Tesla V100, there needs to be a
compromise in model depth and complexity in order to perform in real-time.
This trade-off relationship between accuracy and speed can be seen in the
YOLOv5 models where the smallest model has the fastest speed with the
lowest accuracy, and the largest model has the slowest speed but the highest
accuracy [26].

A library that can significantly increase CNN performance is Compute
Unified Device Architecture (CUDA), developed by NVIDIA. CUDA is a
software layer API that allows a developer to perform general-purpose pro
cessing on CUDA-enabled GPUs. This allows computer scientists to program
the convolutions of all the kernels in a neural network onto the GPU, which
has much greater parallel processing power than a CPU. Therefore, it is
worth exploring edge devices that had a CUDA-enabled GPU.

TensorRT is also a framework by NVIDIA, written in CUDA, that opti
mizes Deep Learning models’ inference on a GPU. One of the primary func
tions of TensorRT is providing quantization to models through the reduction
in the precision of data types representing the weights and parameters of
the models. Traditionally inference is run at single-precision floating-point
(FP32) but using half-precision floating-point (FP16) speeds up a forward
pass through a network with minimal reduction in accuracy. This is because
FP16 precision reduces the number of cache accesses by allowing two times
the amount of data to fit in the same cache line. Faster inference can further
be achieved over FP16 precision with 8-bit integer (INT8) precision. Ten-
sorRT functions in 2 stages, optimization and deployment with their Runtime
engine. The optimization step is only performed once, similar to building a
program, and then is executed to perform inference with the Runtime engine.

Finally, there exists a deep neural network library that is purported to be

16

optimized for inference on NVIDIA Jetson line of boards called tkDNN. It is
built with cuDNN and TensorRT primitives that can exploit Jetson boards
to gain maximum performance [30]. This library was tested, along with
TensorRT, to determine the feasibility of real-time inference in my custom
trained object detectors.

Choosing a lightweight CNN, and pairing it with a compatible inferencing
library, is therefore the important first step in achieving real-time detection
on an edge device. Next, the trade-off relationship between model complexity
and speed must be explored on specific edge devices to fully determine the
feasibility in real-time detection with appropriate accuracy.

2.3 Real-Time Inference Speed

In Object Detection, inference is the process of using a trained CNN to make
predictions on previously unseen data. Inference time is typically measured
in frames per second (FPS) or milliseconds (ms). Device-specific inference
speed is a measurement that starts from the time an image is captured to
when a predicted output is made. For research purposes and comparability,
inference time can also be measured as execution only, which does not include
pre and post-processing steps.

An example for measuring inference speed is using the training platform
Darknet’s inference function [31]. Inference speed is dependent on the com
putational power of either the CPU, GPU, or TPU. When considering Com
puter Vision applications dealing with low-resource edge devices, faster in
ference times are needed for real-time detection. The authors of YOLOv4
[32] defines real-time as 30 frames FPS or greater, and therefore will be the
threshold attempted to meet in the trained object detectors. While 30 FPS is
an arbitrary number, it is a common threshold used by others in the research.
Real-time inference is important for this thesis as well since the model will
be deployed to an autonomous robot. The faster the model can perform
inference, the faster the robot can move and process data. In addition, if the
model was deployed to a UAV as well, inference speed becomes even more
important.

The total execution time of running an object detector occurs in 3 phases.
First is pre-processing where the image or video frame is converted to a
proper input required by the network. Second is the actual inference where
the image does a forward pass through the network. Lastly is post-processing
that involves fine-tuning final bounding box outputs. The total of these 3

17

phases is the end-to-end latency which is the time elapsed from giving a CNN
an input to bounding box determination.

While the scope of this thesis does not involve further post-processing of
bounding boxes such as creating [x,y] coordinates for precision spraying, it is
important to consider end-to-end latency for achieving real-time inferencing.

To optimize inference speed, there are three main strategies to take into
account, outlined in [30]. These are network model design, model compres
sion, and platform. Model design can be configured to help execution and
memory latency by reducing the number of parameters in the CNN model.
This can be achieved by selecting models with fewer convolutions, fewer ker
nels, or choosing a smaller input size. Model compression can come in the
form of quantization, parameter pruning after training, and knowledge distil
lation. All these methods can provide a significant increase in the through
put of the CNN model. Lastly, the platform a model is implemented on
can significantly effect model performance. Most recently, with the advent of
General-Purpose computing on Graphical Processing Units (GPGPU), CPUs
have been dominated by GPUs as the platform of choice in Deep Learning
applications due to its superior parallelization performance.

2.4 Object Detection Accuracy

In Image Classification, the goal is to determine whether the image belongs
to a specific class or not. Its performance will determine two main metrics,
its precision and recall. Object Detection is more complicated as the question
must be asked whether the image has the correct class, and if it does, was
it localized properly. Therefore, it also uses precision and recall, along with
Intersection over the Union (IoU).

In the context of this thesis, precision is the measure of successful weed
detections out of all detections the model makes. In formula, precision is the
number of true positives (TP) out of the number of true positives plus false
positives (FP):

TP
precision = TP + FP (1)

A TP in the context of dandelion detection means the object detector
made a prediction about the location of a dandelion and that the prediction
was correct. For the prediction to be correct about the location of a dan
delion, a specific threshold must be met in bounding box overlap between

18

the ground-truth label and predicted bounding box, which will be discussed
shortly. An FP means the detector made a prediction about the location of
a dandelion, but the prediction was incorrect. The following table shows the
confusion matrix output based on predictions of an object detector. Note,
true negatives (TN) are ignored since it denotes there was a failure to detect
an object that does not exist. A truth table on Object Detection accuracy
is seen in Table 1.

Table 1: Object Detection truth table.

Labeled Predicted Confusion Matrix
Positive Positive TP
Positive Negative FN
Negative Positive FP
Negative Negative TN

Recall is the measure of successful weed detections taking into account
weeds that were failed to be detected. In formula, recall is the number of
true positives out of the number of true positives plus false negatives (FN):

TP
TP + FN (2)

Overall, a high precision indicates a high success rate of successful de
tection of dandelions when the model makes a prediction. A high recall
indicates a high success rate of detecting dandelions with a low failure in
detecting target weeds.

As mentioned, IoU is used to determine accuracy in Object Detection.
The IoU threshold used in the evaluation of the MS-COCO dataset is 0.5
[28], which will also be used for this thesis. This threshold means anything
above it counts as a TP and anything below counts as a FP. IoU calculation is
the overlap ratio between the predicted bounding box and the ground truth
label over the total area of both the predicted bounding box and ground
truth label box:

loU = BBoverlap (3)
BBunion

Currently, the “de facto” metric in object detectors is mean Average
Precision (mAP). It is the primary metric used in YOLOv4 [32] and SSD [15],

19

specifically mAP@0.5. Evaluating mAP@0.5 means measuring the Average
Precision at a 0.5 IoU threshold across all classes in the dataset. Recall and
mAP@0.5 are the two metrics used for this thesis.

In the case of dandelion detection and precision spraying, recall is not as
important as precision. It is better for the robot to miss a weed than it is
to detect a weed that is not there, meaning a false positive. This is because
the robot will make more than one pass in turfgrass, so it will have more
opportunities to make a correct prediction. A mapping algorithm would
handle preventing spraying weeds more than once. If it has lower precision
and is making many false positives, the robot is spraying for weeds that
do not exist. This results in wasted product, wasted power, and reduced
efficiency.

2.5 Edge Device

When choosing an edge device to perform Deep Learning, it is important to
select those that offer a GPU or TPU. A GPU and TPU both offer superior
parallel processing ability over a CPU. Extending the edge device to be used
on an autonomous robot creates new requirements to consider, such as power
consumption, connectivity, and adaptability.

The Jetson line of devices from NVIDIA offers excellent flexibility for
a robot performing Deep Learning. The scope of an autonomous weeding
robot in Groundskeeping means it is physically small and is intended to be
used in smaller commercial and consumer environments. With these require
ments in mind, the edge device used for this thesis was the Jetson Nano 4GB
Developer Kit. The Developer Kit option means the Nano comes integrated
with a board with connections for USB, Ethernet, HDMI, audio, and power.
The Jetson Nano offers the right balance of power, performance, and price,
achieving 472 GFLOPS on 5W of power for only $99. The more advanced
Jetson TX2 requires 1.5x more power, while the top-of-the-line Jetson NX
requires 2x the power. The Jetson Nano is also suitable for serving as the
central computer for a mobile robotic platform as its equipped with a 40-pin
header with onboard GPIO, I2C, I2S, UART, power, and PWM. Specifically,
the Jetson Nano 4GB is NVIDIA’s entry-level embedded device of their Jet-
son line of products. It is a System on Chip (SOC) with a Quad-core ARM
CPU, 128-core Maxwell GPU, 4GB of DDR4 memory, and ability to attach
4 cameras [33]. The Jetson Nano 4GB is shown below in Figure 5.

20

Figure 5: Jetson Nano 4GB Developer Kit [33]

NVIDIA also offers a 2GB version of the Jetson Nano for a slightly lower
price of $59. The double memory capacity you get in the 4GB Nano for only
$40 more makes it a much better option when dealing with the high memory
needs of a CNN.

The camera used to collect the dataset was the Raspberry Pi High Qual
ity Camera. The Raspberry Pi High Quality Camera is the newest camera
offering from the Raspberry Pi Foundation, with significant improvements
over its predecessor, the Camera Module V2. The High Quality Camera
boasts an upgraded 12.3 megapixel Sony IMX477 sensor, adjustable back
focus, and C/CS mount. It is important to note that the Raspberry Pi High
Quality Camera does not have an actual lens, unlike the Camera Module

21

V2, which must be purchased separately. An Arducam 8mm focal length
lens with manual focus and adjustable aperture was used to get clear shots
on the robot prototype.

Figure 6: Raspberry Pi High Quality Camera with lens, attached to Rasp
berry Pi 4.

2.6 Dandelions and Bermudagrass

Weed management in lawns is a common task performed in the Groundskeep-
ing industry. A particularly invasive weed in lawns is dandelion (Taraxacum
officinale), seen in Figure 7. It has a basal rosette base with a strong taproot.
The leaves are deeply serrated and have a lance shape [34]. Managing dan
delions in lawns can be a large monetary and time cost. It can be removed
manually by severing its aggressive taproot, or sprayed with a herbicide. If
the tap root is not removed during mechanical removal, the dandelion will
grow back. If only part of the dandelion is sprayed, it can survive and grow
back as well. Therefore, it must be sprayed with full coverage or have its
tap-root removed to be killed off fully. Using an object detector to iden
tify dandelions with bounding boxes means precision microsprayers could
apply full coverage of herbicide application to each one detected. It should
be noted that there exists dicot-specific herbicides, meaning they will kill
broadleaf weeds like dandelions but will not harm the grass.

22

Figure 7: Dandelion weed in grass.

Bermudagrass (Cynodon dactylon) is a type of turfgrass that is also con
sidered invasive in the United States. Its invasiveness makes it a great grass
for playing fields and golf courses because it self-repairs. For example, if
a chunk of grass gets removed from a golf swing, bermudagrass will even
tually grow laterally to cover it up due to its horizontally creeping stolons.
Bermudagrass is known for how well it looks manicured, exhibiting a uniform
blanket-like appearance, as seen at golf courses. If dandelions start to take
root, it throws off the appearance and no longer is aesthetically pleasing.
In addition, dandelions cause unevenness in bermudagrass which can be a
tripping issue on sports fields or can cause a golf ball to veer off its intended
course. This means managing dandelions in bermudagrass is a worthwhile
task for Grounds departments. Having an affordable autonomous robot that
could take over this task is the basis for this thesis.

2.7 Related Work

Implementations of plant detection in the field and lab have been a thorough
research topic dating back to the 1970s. Some of the earliest work in Machine
Vision for plant detection came from [35]. Hooper, Harries, Ambler developed
a light sensor that could distinguish plant material from soil based on light
absorption ratios. In the 1990s, research on plant recognition happened with

23

a real-time intelligent weed control system that used Computer Vision and
precision chemical application of in-row weeds in commercial tomato fields
[36]. In the early 2000s [37] used a hybrid machine learning and neural
network approach to classify leaves using Ontology.

2.7.1 Precision Agriculture

Research in precision agriculture using CNNs has been abundant. For ex
ample, [38] trained a CNN to detect weeds among sugar beets. They used
Near Infrared (NIR) photos to create a segmented soil mask before train
ing their CNN. Where these authors only captured images of plants in early
growth stages, [39] used optimized Transfer Learning parameters to retrain
ResNet50 based CNN to detect weed and crop species at differing growth
stages. Machine Learning and Deep Learning approaches were compared to
detect weeds within the canola crop [40]. They used a novel Local Binary
Patterns (LPB) approach to show it could get better accuracy and faster
inference than VGG16, VGG19, ResNet50, and InceptionV3 CNNs for im
ages taken in the field. A Pattern Recognition algorithm was developed by
[41] to classify weeds from crops in lettuce rows, along with building a spray
map that can be used for precision application of herbicide to the weeds.
This algorithm was implemented into a Computer Vision platform mounted
on a tractor that could travel 1.5 MPH. The main drawback of their recog
nition system is their reliance on spraying the crop early on with a special
compound that is easily distinguished from weeds in their algorithm.

2.7.2 Robotic Weeding

There have been numerous studies on Machine Vision in robotic weeding,
ranging from path guidance [42] to detection through LIDAR [43]. The
authors developed an autonomous robot using LIDAR to detect over 20 dif
ferent species with 98% accuracy. The point clouds from the LIDAR sensor
were used as features in their Machine Learning algorithm, making it robust
against illumination and atmospheric conditions. A more recent example,
[44] demonstrated a robot that could kill weeds with lasers. It used a color
segmentation algorithm to crop plants from the frame, then size estimation
to distinguish the weed from the crop. The weed detection coordinates were
translated into real-world coordinates and sent to two lasers on gimbals. The
robot had limited mobility though, and could only drive forward, stop, take

24

a picture, processing the data and perform weed elimination, then move for
ward again. A Siamese Convolutional Neural Network for generic object
tracking was trained by [45] and deployed it on a Jetson Nano on a robotic
platform, achieving 10 FPS.

A novel bark image dataset was curated and trained with a CNN to
classify trees based on their bark with an accuracy of 97.81% with majority
voting using Transfer Learning with ResNet34 trained on ImageNet [46].
Another example is from [47], which trained a CNN from scratch to perform
Image Classification on 6 classes of fruit growing on trees. They showed
real-time detection using a CNN was possible with an inference time of 0.03
ms using a high-performance GPU. Similarly, [48] investigated the feasibility
of near real-time Object Detection on an Underwater Autonomous Vehicle
(UAV). They trained a Faster R-CNN model and deployed it on an NVIDIA
Jetson TX1, GTX 1080, and GTX970 on a mobile platform on the UAV.
The made for mobility platform, Jetson TX1, only managed to achieve 0.55
FPS, while the GTX 1080 achieved 5.8 FPS.

2.7.3 Plant Detection with YOLO

There is extensive literature on Object Detection using YOLO, but here I
mention a few relevant papers on plant detection using YOLO that helped
shape part of this thesis. A YOLO object detector was used by [49], and pro
duced marginal increases in mean Average Precision (mAP) while suffering
significant inference speed reduction when increasing image input size from
320 x 320 to 416 x 416 and 608 x 608. In addition, they were able to get
substantial inference speedup, 2.5x, from 16-bit floating point quantization
via TensorRT implementation in their model. Using an improved YOLOv3
model based on DenseNet, [50] detected varying growth stages of apples in or
chards. While they achieved real-time detection using 512 x 512 input image
size, this was done using an NVIDIA Tesla V100 server. This is a common
theme in plant detection studies, where they focus mainly on accuracy and
performance in the lab. They rarely test their models in an environment
where they would be used in production, such as on an edge device. An
other example is [51] whom successfully deployed their YOLOv3 algorithm
to a Jetson Nano to be used in a student UAV competition, though failed
to report inference results. YOLOv3-tiny has been used to detect goosegrass
within strawberry and tomato crops [52]. Their model was pretrained with
the COCO dataset and used data augmentation techniques such as color

25

alteration, cropping, and resizing. Most recently, [53] used a YOLO object
detector with a variety of backbones to detect weeds among lettuce crop rows
using a Jetson TX2, getting real-time inference of 33 FPS and achieving up to
0.93 mAP. Lastly, [29] demonstrated the superiority of the GPU on an edge
device over a CPU by measuring inference times in a YOLO-based model.

2.7.4 Relevant Studies

Finally, I highlight some key studies that my thesis builds upon in the re
search. The authors in [54] used Computer Vision to detect dandelions and
their centers using the Mean Centroid Method. They used classical image
processing steps in the detection process such as sharpening, color thresh
olding, low pass filter, and binarization. The limitations of this study are
that it used lab-like conditions to boost their accuracy of centroid detection
as well as using hand-picked image processing steps, which is not as robust
as Deep Learning. Also using traditional image processing, [55] used edge
detection to identify weeds in ornamental grass and sports turfgrass. They
identified different filters to convolve the image, resulting in higher accuracy
of weed detection. A shortfall of this study is that the authors only saw high
accuracy after they first removed dirt, leaves, and non-uniform objects in
the images, thus not making their algorithm very robust. The first research
to investigate the feasibility of weed detection in turfgrass using CNNs was
done by [2]. They trained two types of CNNs, GoogLeNet and VGGNet, for
Image Classification of dicot weeds in actively growing bermudagrass. They
also trained an object detector using DetectNet to identify a weedy monocot
in dormant bermudagrass. Later that year, the same authors did a similar
study but investigated detection in perennial grass, instead of bermudagrass,
of different types of monocot and dicot weeds [56]. The following year they
finally examined broadleaf weed detection in actively growing bermudagrass
[57] using Image Classification.

Until now the authors showed the possibility of weed detection in turf
grass using Image Classification and Object Detection. None of their papers
have shown detection results on an edge device, having only used powerful
Desktop or Server GPUs to measure inference. While they have performed
Object Detection on grassy weeds in actively growing bermudagrass, they
have not done so with broadleaf weeds in actively growing bermudagrass.
My thesis fills in this gap by showing object detection of a broadleaf weed
like dandelion is possible in actively growing bermudagrass, as well as eval

26

uating the feasibility of real-time detection performance on an edge device.

27

3 Methodology

To test the feasibility of a neural network’s real-time performance, data must
be gathered. For a CNN, the data input are images. This chapter describes
the data gathering process, CNN model training and optimization, and finally
inference evaluation. As noted in the last chapter, the research into dandelion
weed recognition within bermudagrass stops at the lab during inference. This
chapter will extend the research by demonstrating deploying an optimized
CNN model, trained on a self-gathered dataset, to an edge device. Results
gathered from the model training and inferencing will be discussed.

Many studies involving CNN model evaluation leave out key details needed
for providing a fair comparison. This is because either the author failed to
recognize the importance of such details, or some of these details are ab
stracted away in the training and inferencing process. To keep a fair com
parison while evaluating my models, I kept a couple key configurations con
stant across each evaluation. First, when comparing separate object detector
architectures, I use the same resolutions. I train on the same dataset and
measure metrics using the same validation images across all models. All
training is done via Transfer Learning using pre-trained weights on the MS
COCO dataset. All training is performed using the stochastic gradient de
scent (SGD) optimizer. I provide inference speed all as one metric, FPS. I
run inference for all models on the same edge device, the Jetson Nano. The
Jetson Nano was set up to use MAXN power mode for each evaluation, along
with jetson_clocks being enabled. I use FP16 precision and batch size of 1
while performing inference. The exception to this is running inference using
Darknet on the Jetson Nano. It is impossible to use FP16 precision with
Darknet as Tensor Cores are required, which is lacking on a Maxwell GPU.
Lastly, all FPS results include pre-processing and post-processing operations
and were measured on the same video file.

3.1 Dataset

While some research has been done on dandelion detection in turfgrass, either
the dataset was private or not conducive to my application as the ground
sampling distance was too large. Studies mostly took pictures 3 to 5 feet off
the ground, whereas my proposed robot prototype would take pictures at less
than 1 foot. Therefore, I decided to curate my own dataset. They would be
reflective of dandelions growing in bermudagrass in the Southern California

28

region.
Photos of dandelions were collected at varying growth stages. Dandelions

were captured from as young as its two-leaf seedling stage to full basal rosette
flowering stage, which includes a yellow flower. It is important to capture
images that are indicative of real-world situations, and I made sure to collect
images at almost all plant sizes. Figure 8 demonstrates the distribution of
ground-truth label sizes in the dataset.

In checking how big of a dataset to build, [50] showed any number of
images exceeding 3000 in the training set did not have a further significant
influence on their YOLO model. They used a modified YOLOv3 model to
detect varying growth stages of apples in an orchard.

29

Figure 8: The distribution of ground truth label sizes based on 640x640
image size. Each box represents an ideal anchor box size for training YOLO
models.

3.1.1 Data Collection

Initially, I wanted to collect images from California State University Chanel
Islands, which has two playing fields on its campus. One of them, Potrero
Field, contains kikuyu grass. While this is a turfgrass, it had little to no
dandelions present in it as the grass is maintained at higher than average
mowing height. By letting the kikuyugrass grow high, it chokes out and
denies sunlight to other weeds hoping to take root. The other primary playing
field, North Field, contains a multi-species mix of grasses, including rye,

30

bermudagrass, and fescue. While North Field is typically maintained more
often, it was not being maintained most of 2020 due to Covid-19 causing
personnel and resource reduction in the Grounds department.

Therefore, I decided to find a playing field close by with bermudagrass
that still had proper upkeep. I discovered Pleasant Valley Fields, located 5
miles from the campus of CSUCI, shown in Figure 9. It is a large playing field
consisting of 12 FIFA-sized soccer fields with a hybrid bermudagrass that is
mowed under 1”. Bermudagrass is traditionally mowed at 1” or below at golf
courses, recreation fields, and sports fields.

Figure 9: Pleasant Valley Fields - location of data gathering.

A hybrid bermudagrass is the prominent turfgrass used in natural playing
fields and golf courses across the United States. Due to the field’s size, there
was plenty of dandelions to take pictures of as well. This made for a suitable
location to collect data and be representative of general sports fields for future
studies conducting similar research on Object Detection in bermudagrass.

I did not opt for taking photos by hand while walking the field, as many
studies do. Instead, I collected the photos that would replicate how an au
tonomous robot weeder would collect data. This required building a pro
totype robot equipped with a computer and the same type of camera that
would be used in production. I also framed the photos using this prototype
to replicate lighting conditions which can be a major source of error in Deep
Learning training when not accounted for. Using in-situ data, and not arti
ficially creating it, will make my trained model more robust and transferable
to real-world production.

Photos were taken on 6 days in December 2020, February 2021, and
March 2021. In total, 1714 raw images of dandelions and background were
collected. These images served as the training, validation, and test sets.

31

The dataset was balanced with 50% of the photos containing dandelion and
50% containing only bermudagrass as background. It is important to have
a balanced dataset as training only on images with dandelion can lead to a
high amount of false positives. The photos were taken with a Raspberry Pi
High Quality camera attached to a Raspberry Pi 4 8GB computer, as seen
in Figure 10.

Figure 10: Raspberry Pi High Quality Camera with Arducam 8mm lens, on
top of robot prototype, along with a power bank.

An Arducam C-Mount lens, with 8mm focal length, was attached to the
camera. The photos were captured at 640 x 640 resolution with the PiCam-
eraApp Version 0.2 [58] running on Raspbian 10 Buster. A JPG format was
used. A 640 resolution was chosen for two reasons. First, the YOLO object
detector requires a resolution divisible by 32 for its input. Second, a 640
resolution seemed the upper bound for possibly achieving real-time inference
based on previous studies. I used a WiFi hotspot on my Motorola G6 An
droid phone and connected both my Apple Macbook Pro and Raspberry Pi
to it. This allowed me to use VNC Viewer on my laptop to remotely connect
to VNC Server on the Raspberry Pi and share its desktop. I was then able
to use PiCameraApp to preview photos for consideration before capturing
them in the field.

While all images were captured with the robot stationary, video capture
was also investigated. Using the same 640 x 640 resolution, video was able
to capture images of dandelions clearly, without blur, by using a sufficiently
high shutter speed. This was done with the Raspberry Pi’s “raspivid” library.
Shutter speed is also adjustable using the Jetson Nano.

32

Figure 11: Robot prototype at Pleasant Valley Fields.

The robot prototype’s main body consisted of a box with dimensions
229 mm x 229 mm x 330 mm. The Raspberry Pi High Quality camera, at
tached to the Raspberry Pi, was mounted on top of the box with a bird’s eye
view of the grass. The grass to camera distance was approximately 280 mm.
The measured ground sampling distance was 2.79 pixels/mm. The box body
had 2 sets of wheels mounted on the bottom of it for mobility. An LED ring
light was mounted on the inside top of the box to provide a uniform lighting
scheme of the turfgrass. Utilizing artificial light, and blocking out natural
light using the box body, is important in collecting a consistently illuminated
dataset. Using the LED light also means future inference will not be subject
to the variability of sun and cloud conditions. It can also be used during the
night as it is not dependent on sunlight. The camera lens was placed through
the hole of the LED ring light to provide parallel lighting to the lens, as seen
in Figure 12. An Anker 20,000 mAh 18W power bank was used to power the
Raspberry Pi and LED ring light.

33

Figure 12: How the camera lens is positioned within the LED ring light.

The Raspberry Pi was used instead of the Jetson Nano for data collection.
I originally had planned to test inference on the Raspberry Pi as well. Time
constraints and further reading into the literature showed the Raspberry Pi
would be an inferior edge device for Object Detection over the Jetson Nano.
Fortunately, both the Raspberry Pi and Jetson Nano run on a Debian-based
distribution of Linux. I can replicate the exact photo collection process on
the Nano as I did on the Pi, including using the same CSI-based camera and
lens.

34

3.1.2 Data Preparedness and Augmentation

In Object Detection, training data must have ground truth labels. These
ground truth labels are bounding box coordinates denoting the location of
objects in an image. I utilized the software web application Roboflow [59] to
annotate the ground truth labels manually.

A common occurrence in training Deep Learning models is overfitting.
Overfitting is when a model starts to memorize the patterns in the training
data too well. When a model is overfitting is introduced to new data, it will
have subpar accuracy compared to the data it originally trained on. One way
to help with overfitting is through data augmentation. Data augmentation is
a way to increase the amount of data the network is trained on by perform
ing specific techniques that generalizes the data [15]. For a CNN that uses
images, data augmentation means the images are altered to be beneficial to
model training.

Another option to help reduce overfitting and help with model accuracy
is performing a pre-processing step to each image. My goal is to achieve real
time performance in Object Detection which is dependent on the Computer
Vision pipeline throughput. I opted not to include a pre-processing step as
it would add increased time in the pipeline. Also, the attractability of using
a Deep Learning model is that it learns features on its own, and it cuts out
the need to hand chose them in a pre-processing step.

In Roboflow, I performed four data augmentations to my data. These
included flipping horizontally and vertically, rotating 90 degrees clockwise
and counter-clockwise, rotating between -45 degrees to +45 degrees, and
blurring at 0.25 pixels. On some datasets, augmentation can be harmful
to accuracy and getting the training to converge. For example, you would
not want to use the horizontal flip data augmentation technique to a self
driving car dataset, as the model would never come across cars driving upside
down in real life. The weeding robot would view the dandelion in many
different orientations though. The dandelions it approaches can be in any
type of rotation and positioned anywhere in the frame. Thus, I chose the
data augmentations to make my dataset more robust. There was no need to
perform any type of illumination-based data augmentations as my dataset
was uniformly lit by the LED light.

After augmentation, the dataset was expanded to 4285 images. The
dataset was now more robust and less likely to overtrain on irrelevant fea
tures. The training set consisted of 3858 images. The validation set consisted

35

of 342 images, and the test set had 85. Only the training set had augmented
images included in it.

Figure 13: Example of augmentations done on the dataset.

3.2 Training

A variety of software frameworks were used for training. They were Dark-
net, an open-source framework written in C that takes advantage of CUDA
in training and inference. I also used PyTorch, a library in Python that is
easy to use and also integrates with CUDA. Lastly, I used NVIDIA’s Trans
fer Learning Toolkit version 3.0. This is NVIDIAs most recent offering in
building CNN models that are ready for production.

36

Varying training hyperparameters such as learning rate and epochs were
examined in preliminary work (data not shown). Eventually, I converged on
a set of hyperparameters that were maximizing accuracy, that are discussed
at the beginning of this chapter. When training an object detector, a specific
batch size is chosen. Images are randomly selected in each batch which makes
the gradient descent problem a random process as well. To filter out noise
in this random process, it is better to pick larger batch sizes as they better
represent the dataset as a whole. These bigger batch sizes enable you to
increase the learning rate as progress will be larger along the gradient [27].
Therefore, I chose the largest batch size for each training that the video card
would allow in memory. There was no single batch sized used across trainings
as training on different resolutions meant having to use different batch sizes.

3.2.1 Computation Environment

The environment where training of Deep Learning models generally happens
locally on a workstation, in the cloud, or a containerized environment such as
Docker. The cloud environment has the least amount of time setting up but
can result in high costs long term. A containerized environment is beneficial
in setup time and proven compatibility of its software stack. I ended up
choosing a local environment for training to maximize my understanding of
the entire training process and was already in possession of a CUDA-capable
graphics card.

The Operating System (OS) used was Ubuntu Desktop 20.04.1 LTS Focal
Fossa. All training was performed on an NVIDIA RTX 2070 Super. CUDA
version 10.2, cuDNN version 8.0.5, and NVIDIA 455.45.01 drivers were in
stalled as well.

The computation environment that performed inferencing was on the
Jetson Nano. The Nano comes with Ubuntu 18.04.5 LTS along with NVIDIA
Jetpack 4.5.1 SDK. This includes CUDA version 10.2, cuDNN version 8.0.0,
TensorRT version 7.1.3, and NVIDIA L4T version 32.5 graphics drivers.

3.2.2 YOLOv4 Darknet

Darknet is the standard training platform for YOLO and was written orig
inally to train YOLO object detectors. YOLOv4 was chosen over YOLOv3
as it provides many new features that provide an increase in accuracy and
speed on the same MS COCO dataset. One such feature used was mosaic,

37

a data augmentation operation introduced in YOLOv4. It mixes 4 training
images into one to train the classifier on objects outside their normal context
[32].

Within YOLOv4 are many derivative models that consist of changes in
architecture. One such derivative is Yolov4-tiny, released in June 2020 [60].
YOLOv4-tiny is a model with a smaller backbone and only 2 detection heads
instead of the 3 found in YOLOv4. A detection head is where a specific sized
feature map is used to make bounding box predictions. This reduction in the
number of layers in Yolov4-tiny means there are less parameters and weights,
and thus less computation time is needed to make a forward pass through it.
I used the official ”YOLOv4 pre-release” version that features an SPP/PAN
neck, the YOLOv3 head architecture, and a CSP-based Darknet backbone.
A summary of YOLOv4 models are seen in Table 2.

Table 2: Number of layers and detection heads in common YOLOv4 models

Model Number of Layers Number of Heads
YOLOv4 162 3

YOLOv4-tiny 38 2
YOLOv4-tiny-3l 45 3

After preliminary model training, I ended up choosing a modified version
of YOLOv4-tiny called ‘Yolov4-tiny-3l’, which has 3 YOLO detection heads
instead of 2. This means the model predicts bounding boxes at three different
scales instead of 2. It was shown by [29] that the extra YOLO detection head
led to only a minor reduction in speed when deployed on a Jetson Nano.
Having the 3rd YOLO head means higher accuracy due to a 3rd feature map
used in detection.

Input resolutions of 320, 416, and 640 were chosen to compare accu
racy, recall, and inference time. New anchor boxes were generated for each
resolution, specific to my dataset. New anchor boxes are not generated auto
matically and must be done with Darknet’s “calc_anchors” function. It uses
k-means clustering to generate new anchors based on input dimensions, the
number of detectors in the YOLO head, and existing ground truth labels in
the training dataset.

I also trained a full YOLOv4 model called ‘Yolov4’. I wanted to compare
the standard model to the tiny models. I knew inference performance would

38

suffer in the standard model, so I only trained this model at the 320 input
resolution.

Each model training took varying amounts of time depending on the in
put resolution. The models were trained for 6000 iterations using the recom
mended formula from the Darknet documentation. All trainings were verified
they converged, meaning they reached a minima in the loss function. After
model training, precision, recall, and model size were recorded.

3.2.3 YOLOv5 Pytorch

YOLOv5 training was performed in PyTorch version 1.7.1, along with torchvi
sion 0.8.2. I used the official YOLOv5 “v4.0” repository, which is the latest.
YOLOv5 implementation in PyTorch made training easy to set up and per
form over Darknet.

YOLOv5 has four different models of varying sizes. I used the ‘Yolov5s’
model, which is the smallest one they offer. Like ‘Yolov4-tiny-3l’, this small
model also features 3 YOLO heads and has a reduced layer backbone over
the larger models. To have a fair comparison to YOLOv4, I also trained
models on 320, 416, and 640 input resolutions for 100 epochs each.

YOLOv5 offers a superior way to measure metrics and track hyperpa
rameters compared to the other training platforms tested. It is integrated
with the web application Weights and Biases [61]. Each training run has all
related training measures consolidated, making comparisons easy, as seen in
Figure 14. By comparing differences in runs visually, overall time in find
ing an optimal configuration is highly reduced. Like the YOLOv4 process, I
recorded the precision, recall, and model size of each trained ’Yolov5s’ model.

Figure 14: An example of a training run measures in Weights and Biases.

39

3.2.4 TLT 3.0

Transfer Learning Toolkit (TLT) is NVIDIAs Transfer Learning framework
for training a variety of object detection models. I used the latest version,
3.0. The main benefit of using version 3.0 is the support of YOLOv4. One
benefit of training YOLOv4 in version 3.0 is that there is no need to resize the
training images up front. It is also beneficial because its support of Jupyter
notebook examples that make it easier to train a model compared to only
using its Command Line Interface (CLI).

TLT uses a TensorFlow with Keras backend for training. It only allows
Transfer Learning by using NVIDIA’s pretrained models in a Hierarchical
Data Format 5 (.hdf5) extension. TLT has extensive documentation and
makes training more streamlined and easier to use. During training, each
epoch is saved in a weights file which allowed choosing the weights that gave
the best performance metrics.

Unlike Darknet-based YOLOv4 and PyTorch-based YOLOv5, TLT only
provides one base model for YOLOv4, but with the ability to use a variety
of backbones such as Darknet, Resnet, VGG, MobileNet, and SqueezeNet.
To provide a fair comparison, I used the Darknet backbone. To make it
a “tiny” model and be comparable to the CSP-based backbones of ‘Yolov4-
tiny-3l’ and ‘Yolov5s’, I specifically selected the ‘CSPDarknet19’ backbone for
feature extraction. In addition, the YOLOv4 version on TLT uses 3 detection
heads, making it a fair comparison to ‘Yolov4-tiny-3l’ and ‘Yolov5s’. Finally,
I trained these models using 320, 416, and 640 input resolutions for 100
epochs.

In addition to the YOLO models, I trained SSD-based models using Mo-
bileNet as the backbone, called ‘SSDMobileNetV2’. TLT did not support
using the CSPDarknet19 backbone with the SSD detector. MobileNet is a
practical choice in edge inference as it employs depthwise-separable and group
convolutions which increase performance. MobileNet’s reduced architecture,
paired with the SSD detector, makes it a suitable option when choosing a
lightweight CNN. The SSD models were trained with an input resolution of
320, 416, and 640 for 100 epochs each.

Finally, I trained two Faster-RCNN models with TLT, called ‘FRCN-
NDarknet19’. Faster-RCNN is a supported model in TLT that has state-of-
the-art accuracy in Object Detection. I paired it with the CSPDarknet19
backbone for a more fair comparison with the YOLO models. I trained the
models using 320 and 416 input resolutions for 100 epochs each. I left out

40

640 resolution after it became apparent how poor detection speed was in the
416 resolution model.

One benefit of TLT is that it offers a pruning function that trims away
weights not providing any benefit to feature extraction. This removal of
weights results can provide even faster inference times for ‘Yolov4CSPDark-
net19’, ‘SSDMobileNetV2’, and ‘FRCNNDarknet19’. I did not pursue prun
ing of these models as it would be unfair if not done to all the other models
being evaluated.

3.3 Inference

Detection speed was tested on 4 different inferencing platforms. These were
Darknet, PyTorch, tkDNN, and Deepstream. For the ‘Yolov4-tiny-3l’ and
‘Yolov4’ models, they were tested in Darknet, tkDNN, and Deepstream.
‘Yolov5s’ was tested within PyTorch and Deepstream. Finally, the TLT
models, ‘Yolov4cspdarknet19’, ‘SSDMobileNetV2’, and ‘FRCNNDarknet19’
were all tested only in Deepstream. While a more fair comparison would
allow all models to be tested across all inferencing platforms, major incom
patibilities in file formats, training platforms, and software versions did not
allow it.

Inference with Darknet was straightforward. Darknet inference function
ality directly supports Darknet weights and its parameter file. It is run with
its “map” function call. I used a 640x640 video taken with the robot proto
type of bermudagrass and dandelions to measure FPS for each of the models.
One important note about using Darknet on the Jetson Nano is that it does
not support its “CUDNN_HALF” flag being enabled when building it, thus
not performing inference at FP16 precision. As mentioned earlier, the Jetson
Nano has a Maxwell GPU, which lacks Tensor Cores, which are needed to
run FP16 precision. Therefore, all inference run in Darknet on the Jetson
Nano was run at FP32 precision.

Inference with PyTorch was similarly a direct approach. It used the
native weight and parameter files to calculate FPS on the same video used
with Darknet.

Deepstream is NVIDIA’s production-ready inference platform which re
quired much more nuance to set up. At this time, the latest version of
Deepstream, version 5.1, was used. Depending on the model architecture,
different bounding box parsing libraries had to be used. Another difference
is that, unlike Darknet and PyTorch, which used weight files directly, Deep

41

stream required its model to be converted to a TensorRT engine. This can be
done within TLT or natively by Deepstream. Deepstream natively supported
weights trained in Darknet, but weights from YOLOv5 in PyTorch first had
to be converted to ONNX format. After, TensorRTs function “trtexec” had
to be used to convert the ONNX based model into a TensorRT engine. The
same video file was used to measure FPS that was used in Darknet and
PyTorch.

The final inferencing platform used was a library called tkDNN. While
Darknet does not allow FP16 precision on the GPU, tkDNN solves this prob
lem with a workaround specifically for Jetson-based products. Set up is the
most complicated on this platform, requiring Darknet weights to be exported
and converted to a compatible format. Next, tkDNN must be built with spe
cific configuration parameters set.

42

4 Results and Analysis

In the previous chapter, I presented the implementation of the data gathering,
processing, training, and evaluation process. This section, I present and
analyze the results from training and inference evaluation. I first go over
inference speed results and then analyze accuracy vs. speed.

To reiterate, the data used in this thesis were novel images taken in the
field of dandelions in bermudagrass at a local sportsfield park. The data was
consistent in that all images were captured at the same 640 x 640 resolution,
same ground sampling distance, with the same Raspberry Pi High Quality
Camera, and under the same lighting conditions. I also made sure to get
an almost even distribution of dandelion sizes, as seen from Figure 8, with
smaller sizes lacking. An example of some images from the dataset with
dandelion and background can be seen in Figure 15. The top row shows clear
examples of dandelions while the bottom row shows what a background looks
like.

Figure 15: Top row featuring dandelions and bottom row featuring back
ground images.

After training each CNN on the custom dataset, their precision and recall
were measured. The precision metric, mAP, was recorded where it was high
est throughout many epoch checkpoints. The models were then transferred

43

to the Jetson Nano, where they were optimized to run inference. Inference
speed was then measured in FPS. These results can be seen in Table 3. As
mentioned in Chapter 3, three different training platforms were used and
four different inferencing libraries. Finally, model size was recorded as well.

Model Resolution Training Platform (x86) Inference Platform (aarm64) Model Size (MB) mAP@.5 Recall FPS

Yolov4 320 Darknet Darknet 210.2 0.97 0.94 2.7

Yolov4 320 Darknet tkDNN 118.8 0.97 0.94 6.9

Yolov4 320 Darknet Deepstream 119 0.97 0.94 8.9

Yolov4-tiny-3l 320 Darknet Darknet 24.5 0.86 0.84 15.6

Yolov4-tiny-3l 320 Darknet tkDNN 14.6 0.86 0.84 39.8

Yolov4-tiny-3l 320 Darknet Deepstream 14.6 0.86 0.84 49.6

Yolov4-tiny-3l 416 Darknet Darknet 24.5 0.87 0.85 10.9

Yolov4-tiny-3l 416 Darknet tkDNN 33.7 0.87 0.85 26.1

Yolov4-tiny-3l 416 Darknet Deepstream 33.7 0.87 0.85 33.1

Yolov4-tiny-3l 640 Darknet Darknet 24.5 0.77 0.65 5.3

Yolov4-tiny-3l 640 Darknet tkDNN 34.3 0.77 0.65 12.2

Yolov4-tiny-3l 640 Darknet Deepstream 34.3 0.77 0.65 16.1

Yolov4CSPDarknet19 320 TLT3.0 Deepstream 101.9 0.88 n/a 38.9

Yolov4CSPDarknet19 416 TLT3.0 Deepstream 190.7 0.907 n/a 27.8

Yolov4CSPDarknet19 640 TLT3.0 Deepstream 193 0.88 n/a 12.5

Yolov5s 320 Pytorch Deepstream 16 0.97 0.91 41.2

Yolov5s 320 Pytorch Pytorch 14.3 0.97 0.91 10.8

Yolov5s 416 Pytorch Deepstream 23.6 0.97 0.94 26.3

Yolov5s 416 Pytorch Pytorch 14.4 0.97 0.94 9.6

Yolov5s 640 Pytorch Deepstream 20 0.96 0.94 12.5

Yolov5s 640 Pytorch Pytorch 14.4 0.96 0.94 5.6

SSDMobileNetV2 320 TLT3.0 Deepstream 5.2 0.91 n/a 41.8

SSDMobileNetV2 416 TLT3.0 Deepstream 6.6 0.90 n/a 27.5

SSDMobileNetV2 640 TLT3.0 Deepstream 9.6 0.76 n/a 12.6

FRCNNDarknet19 320 TLT3.0 Deepstream 49.2 0.85 0.91 0.7

FRCNNDarknet19 416 TLT3.0 Deepstream 70.4 0.97 0.92 0.7

Table 3: CNN Metrics - Precision, Recall, and FPS

Table 3 shows six different CNN models at varying resolutions. Two of
them were trained in Darknet: ‘Yolov4’ and ‘Yolov4-tiny-3l’. ‘Yolov4’ is the
standard YOLOv4 model and ‘Yolov4-tiny-3l’ is the standard Yolov4-tiny
model but with an extra YOLO head. Of these two different models, they
were inferenced on three different platforms: Darknet, tkDNN, and Deep
stream. It is of note that Darknet has three different connotations. Darknet
is a training platform, an inferencing platform, and a backbone CNN used
in Image Classification and Object Detection. The model ‘Yolov4’ was only
trained at 320 resolution as preliminary studies showed higher resolutions
were not feasible in attaining real-time performance. This was proven as
any of these three models achieved no more than 9 FPS. ‘Yolov4-tiny-3l’ was

44

trained at three different resolutions: 320, 416, and 640. These resolutions
were picked based on prevalence of similar resolutions in the literature using
object detectors. ‘Yolov4-tiny-3l’ showed promising results on tkDNN and
Deepstream at 320 and 416 resolutions, either getting close to or exceeding
real-time inference performing of 30 FPS. Inference on Darknet showed the
most inferior performance but this is due to a lack of FP16 precision, as
mentioned in the previous chapter.

The third model in the table, ‘Yolov4CSPDarknet19’, is a YOLOv4-tiny
derivation from NVIDIA that also features 3 YOLO heads like ‘Yolov4-tiny-
3l’. Due to compatibility limitations, it was only trained in TLT and infer-
enced in Deepstream. Similar to ‘Yolov4-tiny-3l’, it showed pleasing results
at 320 and 416 resolutions, achieving 38.9 and 27.8 FPS, respectively.

The fourth model is ‘Yolov5s’, the smallest model offering from YOLOv5.
It was only trained in PyTorch and inferenced in two platforms: PyTorch and
Deepstream. Analysis of FPS shows the most promising speed comes from
320 and 416 resolutions using Deepstream. Inference in PyTorch exhibited
surprisingly slow speed, even at 320 resolution, only managing 10.8 FPS.

The fifth and sixth models, ‘SSDMobileNetV2’ and ‘FRCNNDarknet19’,
were also trained only in TLT and inferenced in Deepstream due to com
patibility limitations with other platforms. Similar to the other YOLOv4-
tiny variants, ‘SSDMobiletNetV2’ showed compelling FPS results at 320 and
416 resolutions in Deepstream, managing 41.8 and 27.5 FPS, respectively.
‘FRCNNDarknet19’ managed dismal speed results, with both 320 and 416
resolutions achieving 0.7 FPS. I decided not to train a 640 FRCNN model
as previous research showed it would be slow, but it was illuminating how
poor speed was. FRCNN is not a viable object detector for an edge device
like the Jetson Nano.

Next, I map out precision vs. inference speed of the CNNs to determine
which is most optimal, in Figure 16. It is a common phenomena in Object
Detection studies where accuracy and speed exhibit Pareto efficiency [15],
[17], [32]. This means model accuracy cannot be improved without making
speed worse off, and vice versa. Mapping out metrics in this way will show
which CNN is most feasible for real-time inference while also exhibiting rea
sonable accuracy. It will also demonstrate if these trained models will exhibit
Pareto efficiency.

45

Figure 16: Comparison of accuracy (mAP) vs speed (FPS) of trained CNNs.
Each series represents a different model inferenced on a specific library, across
varying resolutions.

With mAP on the y-axis and FPS on the x-axis, the ideal model with
the highest accuracy and fastest inference would exist in the top right of the
graph. First, six of the models achieved real-time inference speeds, surpass
ing the 30 FPS threshold. Two models have the most promising results when
accounting for accuracy: ‘Yolov5s’ and ‘Yolov4-tiny-3l’, both at 320 resolu
tion and inferenced on Deepstream. The trade-off between the two means the
‘Yolov5s’ model has higher accuracy, while choosing ‘Yolov4-tiny-3l’ means
faster speed. It is important to point out that the y-axis (mAP) scale has a
minimum bound of 0.75 and maximum bound of 1, while the x-axis (FPS)
has a minimum bound of 0 and a maximum bound of 50. This means the
magnitude of change visualized in mAP is not the same as FPS. Both have
high accuracy, 0.86 mAP for ‘Yolov4-tiny-3l’ and 0.97 mAP for ‘Yolov5s’.
‘Yolov4-tiny-3l’ has a 20.4% increase in speed and a 12.8% reduction in ac
curacy compared to ‘Yolov5s’.

The best inference platform was Deepstream compared to Darknet, Py-
Torch, and tkDNN. For each model that was inferenced on tkDNN, there
existed a faster occurrence at the same resolution, on Deepstream. This

46

demonstrates tkDNN was inferior to Deepstream. Their library claims to
be written specifically to speed up Deep Learning inference on Jetson prod
ucts, yet it fails to achieve what NVIDIA’s Deepstream implementation does.
This does not mean it exhibited poor performance as it still achieved real
time inference with the ‘Yolov4-tiny-3l’ model at 320 resolution. PyTorch
and Darknet both failed to achieve real-time performance.

An interesting observation from Figure 16 is that peak accuracy for most
models happened at 416 resolution and dipped for 320 and 640 resolutions.
This is in contrast to the phenomena of increasing accuracy with increasing
resolution in other Object Detection studies. There are a couple reasons I
attributed to the trends seen in Figure 16. First, the dataset trained on is
much simpler compared to the ones used in [15], [17], [32]. They trained on
MS COCO, which has 80 classes and complex objects, whereas the dataset
I curated has one class with a simple object shape and orientation. Second,
I believe the lack of small objects in my dataset are causing a decrease in
mAP at 640 resolution. You usually want to increase the resolution to help
detect smaller objects but most of my ground truth labels skewed towards
medium to large size objects, relative to frame size. Finally, I attribute the
peak in accuracy at 416 resolution to the anchor box choices. Anchor boxes
have to be selected based on data distribution and input image size, and I
attribute the lack of wise anchor box choices to decreases in mAP.

Overall, the feasibility of real-time dandelion detection with a CNN is
best realized using ‘Yolov5s’ or ‘Yolov4-tiny-3l’ while using Deepstream for
inference. Figure 17 shows example detection results of the ’Yolov5s’ model
with 320 input resolution. It is a combination of sixteen images, with eight
containing dandelion and eight containing background images. In the back
ground images, no false positives were observed. In the images with dande
lion, they were all localized correctly.

47

Figure 17: Predictions made by ‘Yolov5s’ at 320 resolution on 8 images
containing dandelions and 8 background images.

48

5 Discussion

Weeds such as dandelions are considered a serious issue in turfgrass man
agement. They compete for nutrients, water, sunlight, and cause undesir
able aesthetics. Traditional methods of weed management in turfgrass have
many issues, such as increased costs and potential environmental and health
hazards. Deep Learning and other smart solutions are abundant in Agri
culture production and research but lacks in the Groundskeeping industry
such as athletic fields, golf courses, commercial and residential lawns, and
institutional landscapes. The aim of this thesis was to test the feasibility
of real-time weed detection in turfgrass using an edge device. This would
provide the Computer Vision module to an affordable autonomous robot
utilizing precision sprayers.

The first published study on weed detection in turfgrass systems using
Deep Learning was by [2]. They showed the feasibility of using CNNs to
identify broadleaf weeds in actively growing bermudagrass with Image Clas
sification and weedy Bluegrass in dormant bermudagrass using Object De
tection. The same authors followed up that study by demonstrating the
feasibility of detecting weedy grasses in actively growing bermudagrass using
Object Detection [57]. In addition, Object Detection of broadleaf weeds was
performed in [56], including dandelion, in perennial ryegrass. Ryegrass has a
different texture and growth habit than bermudagrass. My thesis work sits
within these studies as none had shown the feasibility of dandelion detection
in actively growing bermudagrass using Object Detection. Further, my thesis
extends all their work by testing the feasibility of using an object detector in
the field on an edge device, in the hopes of achieving real-time performance.

Work in this thesis involved gathering images in the field. This data was
cleaned, labeled, and then augmented for training. Overall, 15 CNN object
detectors were trained and evaluated for accuracy. Finally, they were all
moved to an edge device, optimized, and performed inference.

This thesis’s key finding is that it is feasible to achieve real-time de
tection of dandelions in bermudagrass using an edge device such as the
Jetson Nano. I used a fair evaluation method of CNNs by keeping most
parameters and variables constant across comparisons. Four object detec
tors were able to achieve real-time performance: ‘Yolov4-tiny-3l’, ‘Yolov5s’,
‘Yolov4CSPDarknet19’, and ‘SSDMobileNetV2’. Of these, only ‘Yolov4-tiny-
3l’ achieved this with 416 resolution, while the rest were at 320. The max
FPS achieved with 640 resolution was 16.1 FPS by ’Yolov4-tiny-3l’.

49

I attribute attaining real-time detection from these CNNs to a couple
of factors. First, they all have lightweight architecture. Selecting a CNN
with reduced layers and kernels is essential when inference speed is most
important. Second, quantization is equally important by reducing their pre
cision from FP32 to FP16. Third, choosing an edge device with a GPU
made achieving real-time inference possible. This is because the training
and inference platforms used are optimized in CUDA, and selecting an edge
device without a CUDA-enabled GPU means missing out on extra perfor
mance. Lastly, the choice of inference platform showed differences in speed.
NVIDIA’s Deepstream demonstrated the highest inference speed. This makes
sense as NVIDIA also makes the Jetson, CUDA, and TensorRT.

Of the 4 CNNs attaining real-time inference, it was clear from Figure 16
that ‘Yolov5s’ at 320 input resolution stood out as the optimal choice. It
achieved 97% precision, 91% recall and 41.2 FPS using Deepstream. I believe
it would be very suitable serving as an object detector on an autonomous
weeding robot. Its high precision means it will have a high success rate of
detection when it makes a prediction and its high recall means it will have
a high detection rate of target weeds. As mentioned in Chapter 3, recall is
not as important as precision in dandelion detection and spraying. Therefore,
even though ‘Yolov4-tiny-3l’ has lower recall, it would also be a suitable CNN
to implement in a weeding robot as well.

What cannot be determined by this thesis is how lightweight and quan
tized CNNs can perform on edge devices that are not CUDA-capable. The
TensorRT library and Deepstream inference platform are what made the
most contribution to speeding up inference in the models evaluated in this
thesis. One should not infer how these models would perform on edge devices
like the Raspberry Pi or Google Coral, both which lack CUDA cores.

5.1 Limitations

Bermudagrass is either actively growing or dormant. In Southern California,
it can be actively growing year-round, while in other years and locations it can
enter a dormant state if temperatures dip below freezing. One shortcoming
of this thesis is that no training images contained dormant bermudagrass. I
hypothesize the trained models would be more robust against color changes
in bermudagrass if dormant bermudagrass images were used in training.

Another issue faced was that my dataset seemed to lack complexity. It
could have used more images of grass that had been scalped by a mower, of

50

sprinkler heads and irrigation boxes, high traffic areas where grass is com
pacted, and when grass has morning dew on it. All these would have im
proved the complexity and robustness of the dataset and could have helped
with accuracy issues when training at different input resolutions.

Another limitation of this thesis was the capture method of data. While
I used the same type of camera that would be used in production, the frames
were captured while the robot was stationary. In production, the robot would
be moving. The lack of motors on the robot prototype meant I could not
capture video or frames in motion.

5.2 Future Work

The inference time measured in this thesis is end-to-end, which includes
pre-processing, passing through the network, and NMS with bounding box
prediction. If this work is to be implemented into a robot, additional pro
cessing time will be required to translate bounding box detection into an
algorithm that handles weed removal, such as precision spraying or mechan
ical removal. How fast this algorithm is will determine the final Computer
Vision pipeline of the robot. Therefore, it is advised to pick and train a model
that is achieving more than 30FPS to account for this extra post-processing
speed.

One shortcoming of the Jetson Nano is that it does not support INT8
operations. Testing inference on a device that supports it like the Google
Coral or Jetson NX could provide higher FPS. Further, exploring other edge
devices is important as newer technologies are developed that help improve
throughput.

Two other routes that can be explored to help speed up throughput of
the detection system. First, model pruning can be performed, which elimi
nates some weights and thus shrinking model size. Second, throughput can
potentially be improved by using OpenMP parallelization on the CPU of an
edge device to decrease latency in pre-processing and the spraying algorithm
which takes the bounding box coordinates from inference.

Finally, this thesis provides the Computer Vision framework for creating
an autonomous weeding robot. It shows real-time dandelion detection using
an affordable Jetson Nano is possible. Next steps would be to build the robot
and implement an algorithm that uses the object detectors trained with this
thesis to spray dandelions using precision microsprayers.

51

5.3 Conclusions

Computer Vision plays an important role in the perception suite in precision
weed management. To avoid misclassifications and misses all together, the
model used must be robust and accurate. Robustness and high accuracy can
be achieved through the use of Deep Learning. However, Deep Learning is
very computationally intensive and can be slow on edge devices. Fortunately,
it benefits from the parallel processing and matrix computation of a GPU.
This improvement, along with quantization, lightweight CNN architecture,
and platform optimization, means tasks such as Object Detection is possi
ble on resource-constrained edge devices, thus taking Deep Learning to the
edge. These edge devices can then be used outside the lab on robotic plat
forms. In the Groundskeeping industry, utilizing an autonomous weeding
robot can save on resource costs, divert manpower to more complex projects,
and eliminate human error in the weeding process. This AI-powered software
and hardware for this new intelligent weeding approach in turfgrass is now
realized with this thesis.

52

References

[1] Sparsh Mittal. A Survey on optimized implementation of deep learning
models on the NVIDIA Jetson platform. Journal of Systems Architec
ture, 97:428-442, August 2019.

[2] Jialin Yu, Shaun M. Sharpe, Arnold W. Schumann, and Nathan S. Boyd.
Deep learning for image-based weed detection in turfgrass. European
Journal of Agronomy, 104:78-84, March 2019.

[3] T. C. Wei, U. U. Sheikh, and A. A. A. Rahman. Improved optical char
acter recognition with deep neural network. In Proceedings of the 2018
IEEE 14th International Colloquium on Signal Processing Its Applica
tions (CSPA), pages 245-249, March 2018.

[4] J. Vreca, K. J. X. Sturm, E. Gungl, F. Merchant, P. Bientinesi, R. Le-
upers, and Z. Brezocnik. Accelerating Deep Learning Inference in Con
strained Embedded Devices Using Hardware Loops and a Dot Product
Unit. IEEE Access, 8:165913-165926, 2020.

[5] K. A. Althelaya, S. A. Mohammed, and E.-S. M. El-Alfy. Combining
Deep Learning and Multiresolution Analysis for Stock Market Forecast
ing. IEEE Access, 9:13099-13111, 2021.

[6] D. Batra, G. Singhal, and S. Chaudhury. Gabor filter based fingerprint
classification using support vector machines. In Proceedings of the IEEE
INDICON 2004. First India Annual Conference, 2004., pages 256-261,
December 2004.

[7] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. ImageNet
classification with deep convolutional neural networks. In Proceedings
of the 25th International Conference on Neural Information Processing
Systems - Volume 1, NIPS’12, pages 1097-1105, Red Hook, NY, USA,
December 2012. Curran Associates Inc.

[8] P. Viola and M. Jones. Rapid object detection using a boosted cascade
of simple features. In Proceedings of the 2001 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition. CVPR 2001,
volume 1, pages 515-518, December 2001. ISSN: 1063-6919.

53

[9] N. Dalal and B. Triggs. Histograms of oriented gradients for human de
tection. In Proceedings of the 2005 IEEE Computer Society Conference
on Computer Vision and Pattern Recognition, volume 1, pages 886-893,
June 2005. ISSN: 1063-6919.

[10] P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ramanan. Ob
ject Detection with Discriminatively Trained Part-Based Models. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 32:1627
1645, September 2010.

[11] Pierre Sermanet, David Eigen, Xiang Zhang, Michael Mathieu, Rob
Fergus, and Yann LeCun. OverFeat: Integrated Recognition, Localiza
tion and Detection using Convolutional Networks. arXiv:1312.6229 [cs],
February 2014.

[12] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich
feature hierarchies for accurate object detection and semantic segmen
tation. arXiv:1311.2524 [cs], abs/1311.2524, October 2014.

[13] Ross Girshick. Fast R-CNN. arXiv:1504.08083 [cs], abs/1504.08083,
September 2015.

[14] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster R-CNN:
Towards Real-Time Object Detection with Region Proposal Networks.
arXiv:1506.01497 [cs], abs/1506.01497, January 2016.

[15] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott
Reed, Cheng-Yang Fu, and Alexander C. Berg. SSD: Single Shot Multi
Box Detector. In Bastian Leibe, Jiri Matas, Nicu Sebe, and Max Welling,
editors, Computer Vision - ECCV 2016, Lecture Notes in Computer
Science, pages 21-37, Cham, 2016. Springer International Publishing.

[16] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi.
You Only Look Once: Unified, Real-Time Object Detection.
arXiv:1506.02640 [cs], May 2016.

[17] Joseph Redmon and Ali Farhadi. YOLO9000: Better, Faster, Stronger.
arXiv:1612.08242 [cs], December 2016.

[18] Hei Law and Jia Deng. CornerNet: Detecting Objects as Paired Key
points. arXiv:1808.01244 [cs], March 2019.

54

[19] Kaiwen Duan, Song Bai, Lingxi Xie, Honggang Qi, Qingming Huang,
and Qi Tian. CenterNet: Keypoint Triplets for Object Detection.
arXiv:1904.08189 [cs], April 2019.

[20] Zhi Tian, Chunhua Shen, Hao Chen, and Tong He. FCOS: Fully Con
volutional One-Stage Object Detection. arXiv:1904.01355 [cs], August
2019.

[21] Xingyi Zhou, Jiacheng Zhuo, and Philipp Krahenbuhl. Bottom-
up Object Detection by Grouping Extreme and Center Points.
arXiv:1901.08043 [cs], April 2019.

[22] Zhengxia Zou, Zhenwei Shi, Yuhong Guo, and Jieping Ye. Object De
tection in 20 Years: A Survey. arXiv:1905.05055 [cs], May 2019.

[23] Joseph Redmon and Ali Farhadi. YOLOv3: An Incremental Improve
ment. arXiv:1804.02767 [cs], April 2018.

[24] Chien-Yao Wang, Alexey Bochkovskiy, and Hong-Yuan Mark
Liao. Scaled-YOLOv4: Scaling Cross Stage Partial Network.
arXiv:2011.08036 [cs], November 2020.

[25] Chien-Yao Wang, Hong-Yuan Mark Liao, I.-Hau Yeh, Yueh-Hua Wu,
Ping-Yang Chen, and Jun-Wei Hsieh. CSPNet: A New Backbone
that can Enhance Learning Capability of CNN. arXiv:1911.11929 [cs],
November 2019.

[26] Glenn Jocher. ultralytics/yolov5, April 2021.
https://github.com/ultralytics/yolov5, accessed on 2021-01-15.

[27] Tong He, Zhi Zhang, Hang Zhang, Zhongyue Zhang, Junyuan Xie, and
Mu Li. Bag of Tricks for Image Classification with Convolutional Neural
Networks. arXiv:1812.01187 [cs], December 2018.

[28] Tsung-Yi Lin, Michael Maire, Serge Belongie, Lubomir Bourdev, Ross
Girshick, James Hays, Pietro Perona, Deva Ramanan, C. Lawrence Zit-
nick, and Piotr Dollar. Microsoft COCO: Common Objects in Context.
arXiv:1405.0312 [cs], February 2015.

[29] Byung-Gil Han, Joon-Goo Lee, Kil-Taek Lim, and Doo-Hyun Choi. De
sign of a Scalable and Fast YOLO for Edge-Computing Devices. Sensors
(Basel, Switzerland), 20(23), November 2020.

55

https://github.com/ultralytics/yolov5

[30] Micaela Verucchi, Gianluca Brilli, Davide Sapienza, Mattia Verasani,
Marco Arena, Francesco Gatti, Alessandro Capotondi, Roberto Cavic-
chioli, Marko Bertogna, and Marco Solieri. A Systematic Assessment of
Embedded Neural Networks for Object Detection. In 25th IEEE Inter
national Conference on Emerging Technologies and Factory Automation.
IEEE, October 2020.

[31] Alexey Bochkovskiy. AlexeyAB/darknet, December 2020.
, accessed on 2021-01-15.https://github.com/AlexeyAB/darknet

[32] Alexey Bochkovskiy, Chien-Yao Wang, and Hong-Yuan Mark Liao.
YOLOv4: Optimal Speed and Accuracy of Object Detection.
arXiv:2004.10934 [cs, eess], April 2020.

[33] NVIDIA. Jetson Nano 4GB Developer Kit, October 2020.
, ac

cessed on 2020-11-15.
https://developer.nvidia.com/embedded/jetson-nano-developer-kit

[34] John Roncoroni. UC IPM Pest Notes: Dandelion. UC ANR, 7469, 2018.

[35] A. W. Hooper, G. O. Harries, and B. Ambler. A photoelectric sensor for
distinguishing between plant material and soil. Journal of Agricultural
Engineering Research, 21(2):145-155, June 1976.

[36] W. S. Lee, D. C. Slaughter, and D. K. Giles. Robotic Weed Control
System for Tomatoes. Precision Agriculture, 1(1):95-113, January 1999.

[37] Hong Fu, Zheru Chi, Dagan Feng, and Jiatao Song. Machine learning
techniques for ontology-based leaf classification. In ICARCV 2004 8th
Control, Automation, Robotics and Vision Conference, 2004., volume 1,
pages 681-686 Vol. 1, December 2004.

[38] Andres Milioto, Philipp Lottes, and C. Stachniss. Real-time Blob-wise
Sugar Beers vs Weeds Classifcation For Monitoring Fields Using Con
volutional Neural Networks. ISPRS Annals of the Photogrammetry, Re
mote Sensing and Spatial Information Sciences, IV-2W3:41-48, 2017.

[39] Abdel-Aziz Binguitcha-Fare and Prince Sharma. Crops and weeds classi
fication using Convolutional Neural Networks via optimization of trans
fer learning parameters. International Journal of Engineering and Ad
vanced Technology, 8(5), 2019.

56

https://github.com/AlexeyAB/darknet
https://developer.nvidia.com/embedded/jetson-nano-developer-kit

[40] Vi Nguyen Thanh Le, Selam Ahderom, and Kamal Alameh. Perfor
mances of the LBP Based Algorithm over CNN Models for Detecting
Crops and Weeds with Similar Morphologies. Sensors, 20(8):2193, Jan
uary 2020. Multidisciplinary Digital Publishing Institute.

[41] Rekha Raja, Thuy T. Nguyen, David C. Slaughter, and Steven A. Fen
nimore. Real-time weed-crop classification and localisation technique for
robotic weed control in lettuce. Biosystems Engineering, 192:257-274,
April 2020.

[42] B Chen, S Tojo, and K Watanabe. Machine Vision for a Micro Weeding
Robot in a Paddy Field. Biosystems Engineering, 85(4):393-404, August
2003.

[43] Ulrich Weiss, Peter Biber, Stefan Laible, Karsten Bohlmann, and An
dreas Zell. Plant Species Classification Using a 3D LIDAR Sensor and
Machine Learning. In 2010 Ninth International Conference on Machine
Learning and Applications, pages 339-345, December 2010.

[44] Ya Xiong, Yuanyue Ge, Yunlin Liang, and Simon Blackmore. Develop
ment of a prototype robot and fast path-planning algorithm for static
laser weeding. Computers and Electronics in Agriculture, 142:494-503,
November 2017.

[45] Alexander Selberg. Generic Object Tracking with NVIDIA Jetson Nano
Using Siamese Convolutional Neural Networks. PhD thesis, Lund Uni
versity, 2020.

[46] Mathieu Carpentier, Philippe Giguere, and Jonathan Gaudreault. Tree
Species Identification from Bark Images Using Convolutional Neural
Networks. In 2018 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pages 1075-1081, October 2018. ISSN:
2153-0866.

[47] Saedi Seyed and Khosravi Hossein. A deep neural network approach
towards real-time on-branch fruit recognition for precision horticulture.
Expert Systems with Applications, 159:113594, November 2020. Perga
mon.

57

[48] R. Goring. Feasibility of Neural Networks for Maritime Visual Detection
on a Mobile Platform. PhD thesis, Embry-Riddle Aeronautical Univer
sity, 2017.

[49] Elias Stein, Siyu Liu, and John Sun. Real-Time Object Detection on an
Edge Device. Final Report, Stanford University, 2019.

[50] Yunong Tian, Guodong Yang, Zhe Wang, Hao Wang, En Li, and Zize
Liang. Apple detection during different growth stages in orchards using
the improved YOLO-V3 model. Computers and Electronics in Agricul
ture, 157:417-426, February 2019.

[51] A. Grebo, T. Konsa, G. Gasparovic, and B. Klarin. Application of
YOLO algorithm on student UAV. In 2020 5th International Conference
on Smart and Sustainable Technologies (SpliTech), pages 1-6, Septem
ber 2020.

[52] Shaun M. Sharpe, Arnold W. Schumann, and Nathan S. Boyd. Gooseg
rass Detection in Strawberry and Tomato Using a Convolutional Neural
Network. Scientific Reports, 10(1):9548, June 2020. Nature Publishing
Group.

[53] Bo Liu and Ryan Bruch. Weed Detection for Selective Spraying: a
Review. Current Robotics Reports, 1(1):19-26, March 2020.

[54] Ibrahim Babiker, Wen-Fang Xie, and Guangyi Chen. Recognition of
Dandelion Weed via Computer Vision for a Weed Removal Robot. In
2019 1st International Conference on Industrial Artificial Intelligence
(IAI), pages 1-6, July 2019.

[55] Lorena Parra, Jose Marin, Salima Yousfi, Gregorio Rincon, Pedro Vi
cente Mauri, and Jaime Lloret. Edge detection for weed recognition in
lawns. Computers and Electronics in Agriculture, 176:105684, Septem
ber 2020.

[56] Jialin Yu, Arnold W. Schumann, Zhe Cao, Shaun M. Sharpe, and
Nathan S. Boyd. Weed Detection in Perennial Ryegrass With Deep
Learning Convolutional Neural Network. Frontiers in Plant Science, 10,
2019. Frontiers.

58

[57] Jialin Yu, Arnold W. Schumann, Shaun M. Sharpe, Xuehan Li, and
Nathan S. Boyd. Detection of grassy weeds in bermudagrass with deep
convolutional neural networks. Weed Science, 68(5):545-552, September
2020. Cambridge University Press.

[58] Bill Williams. PiCameraApp, 2018.
https://github.com/Billwilliams1952/PiCameraApp, accessed on
2021-11-15.

[59] Joseph Nelson. Roboflow: Everything you need to start building
computer vision into your applications, January 2021. Version 1.0,

, accessed on 2021-01-15.https://roboflow.ai

[60] Alexey Bochkovskiy. YOLOv4-tiny released: 40.2% AP50, 371
FPS (GTX 1080 Ti), 1770 FPS tkDNN/TensorRT, October 2020.

, accessed on 2020
12-15.
https://github.com/AlexeyAB/darknet/issues/6067

[61] Lukas Biewald. Experiment Tracking with Weights and Biases, 2020.
, accessed on 2021-02-15.https://www.wandb.com

59

https://github.com/Billwilliams1952/PiCameraApp
https://roboflow.ai
https://github.com/AlexeyAB/darknet/issues/6067
https://www.wandb.com

