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Abstract

Weed control is a challenging issue in turfgrass management. While 
Precision Agriculture is robust in the literature and production, it is 
lagging in the Groundskeeping industry. One area that can benefit 
from Artificial Intelligence is weed management in turfgrass. Object 
Detection is one of the critical tasks in state-of-the-art autonomous 
systems. Recent developments in Deep Learning technology and soft
ware have allowed significant increases in detection accuracy and speed. 
A combination of lightweight Convolutional Neural Network mod
els, platform-specific optimizations, and model quantization have con
tributed to the performance increase seen in object detectors. This 
thesis explores multi-dimensional trade-offs in Object Detection to as
sess the feasibility of real-time weed detection on an edge device. Two 
viable models were discovered that could run in real-time, at least 
30FPS, on the Jetson Nano 4GB. These results imply weed detection 
within turfgrass is feasible using a low-cost energy-constrained edge 
device and serves as a precursor to an autonomous robotic implemen
tation.
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1 Introduction

Weed control is a high cost for Grounds departments at schools, public works, 
and golf courses. These costs extend to manpower, weed control products, 
and mechanical resources. These departments must hire dedicated weed 
control specialists as well as purchase high cost herbicides that are highly 
regulated. Currently, weeding is performed chemically or mechanically, both 
by human intervention. Chemical spraying has potential human health haz
ards, and mechanical removal is a large investiture in labor that can be 
used elsewhere on more complex tasks. The past few years have brought 
advancements in Artificial Intelligence (AI) that can transform the Grounds 
department, similar to what it has done for the agricultural industry. One 
specific area that could benefit dramatically is weed removal. The implemen
tation of automatic weed detection, as shown in Figure 1, can be a solution to 
this problem and bringing the Groundskeeping industry into a more efficient 
modern technological era.

Figure 1: Detection of dandelion using Artificial Intelligence.
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Plant recognition and detection has been one of the main focuses in preci
sion agriculture. Being able to recognize a plant is the first step in performing 
intelligent decisions downstream. Technological advancements in this field 
have led to lowering production costs, increasing crop yield, and improv
ing overall production efficiency. These comprehensive benefits can also be 
extended to the Groundskeeping industry. Many tasks within a Grounds de
partment can be overhauled to benefit from technology. One such task that 
has seen a transition to smart automation is mowing. For example, Califor
nia State University, Channel Islands (CSUCI) utilizes an autonomous robot 
mower by Husqvarna to mow its playing fields, as seen in Figure 2. One 
area that is lacking in technology in the Groundskeeping industry is weed 
management.

Figure 2: An autonomous mowing robot used on campus at CSUCI.

In order to use intelligent solutions, it has to be deployed on hardware 
that can support the high computational demands of Artificial Intelligence. 
The hardware must also support a software stack capable of running AI 
models. An example of this type of hardware that can solve problems out 
in the field is an edge device [1]. An edge device is a single board computer
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designed to be compact, power efficient, and specialized in its use.
The increase in computing power in edge devices has increased tremen

dously in recent years. Teamed with a high-quality camera, these devices 
can process large amounts of visual data. They now can provide a balance 
within the constraints of size, weight, and power (SWaP); giving rise to their 
entry into the Deep Learning domain. To be realized in the public’s everyday 
life, AI solutions need to achieve energy efficiency, objective accuracy, and 
small form-factor. Likewise, these solutions should be fast enough to run in 
real-time to be practical. While Deep Learning, a subset of AI, is solving 
the recognition problem, it has had its limitations due to size and complex
ity. The Deep Learning solutions are computationally complex and require 
modern hardware solutions to run effectively. They are also very memory in
tensive due to the nature of their input being images or video. These present 
challenges to deploy on edge devices due to resource constraints on embed
ded hardware. What follows is the why, what, and how an edge device could 
feasibly be used for weed management in the Groundskeeping industry using 
Deep Learning.

1.1 Motivation

The motivation for this thesis stems from a variety of factors. My undergrad
uate degree in Biology first introduced me to the floral domain. Afterwards 
I attained an internship with the National Park Service in natural resource 
management. Next, I spent eight years working for the Grounds department 
at CSUCI in various roles. It was here I developed a deeper understanding 
of weed and horticulture management. Over the years, I noticed sustainable 
practices and innovative technology were starting to creep into our daily rou
tine to assist in working more efficiently and effectively. For example, most 
power equipment in the Grounds department at CSUCI is electric, like those 
seen in Figure 3. I want to continue this ongoing effort of rethinking how a 
Grounds department manages its efforts and introduce smart technology to 
achieve these goals.
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Figure 3: CSUCI Grounds department employing sustainable electric equip
ment.

The campus has employed a solar powered autonomous robot mower, to 
cut grass at its playing fields as mentioned earlier. A conventional mower 
is loud, has toxic emissions, runs on gas, and can only be operated when 
an employee is available. The robotic mower is an example of innovative 
thinking and smart implementation for the Grounds department. It will not 
disturb classes since it is quiet, and will not contribute emissions or add to 
fuel costs as it is solar-powered. It can also be run during the night or when 
employees are out sick or unavailable. My goal is to provide a prototype 
and Computer Vision model for a similar type of smart robot but one which 
manages weeds in turfgrass.
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The way Grounds departments manage weeds is they must still take the 
time to spot spray weeds within the turfgrass of its playing fields and other 
grassy areas. Spot spraying effectively saves on costs as 100% of the herbicide 
is being applied to 100% of the weeds, however it has many downsides. First, 
it takes a long time to walk the grassy areas, a heat safety concern on hot 
days for employees in full Personal Protective Equipment (PPE) such as long 
sleeve shirts, pants, masks, and heavy boots. Second, the search for weeds is 
subject to human perception and error. An employee out walking a soccer 
field will miss many weeds due to path navigation. Lastly, spot spraying by 
an employee means that they will be subject to spray drift from wind and 
splashback of the herbicide and is therefore a chemical exposure safety issue.

Grounds departments also have the option of herbigation, which is the 
method of injecting herbicides through an irrigation system. Herbigation is a 
speedy process and is great in weed elimination coverage as the whole grassy 
area will be subject to the irrigation. The downsides of herbigation are that 
it is costly to install and inject, and wasteful as no turfgrass is uniformly 
covered in weeds. It is also potentially toxic to the environment and humans 
- there can be significant runoff and high rates of drift as the herbicide is 
being broadcast high in the air through the sprinklers.

I want to develop a solution that takes the pros of spot spraying and 
herbigation and eliminates the cons while also being sustainable. Such a 
solution was a smart robot framework that could identify and spray weeds 
in grass that would be cost-effective, autonomous, and run off solar power. 
To narrow the scope of this into a thesis, I specifically want to create a Deep 
Learning model that could run in real-time on an edge device for detecting 
the weedy dandelions in turfgrass. My data and results could then set the 
framework for implementing an autonomous weed spraying robot. This robot 
could use the detected weed results with precision microsprayers for effective 
weed management in turfgrass.

1.2 Scope and Limitations

Specific constraints were used in this thesis to narrow the scope. The re
search is limited to dandelions and a commonly used type of turfgrass called 
bermudagrass. The growth habits of both these plants are reflective of grow
ing in a Mediterranean climate.

This thesis is also only limited to the Computer Vision aspect of the 
weeding robot. It does not provide any mechanical aspects about the robot, 
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including path navigation, localization, and power requirements. It also does 
not explain how the robot would remove or kill the weed once recognized. 
This thesis is to serve as the pre-cursor to all of these.

This thesis is also scoped to Deep Learning only on a Graphical Processing 
Unit (GPU). While other AI-dedicated accelerator platforms exist, such as a 
Tensor Processing Unit (TPU) or Field-programmable Gate Array (FPGA), 
for now they have limited flexibility in the types of Deep Learning models 
they can support.

Lastly, due to time constraints, only one edge device will be examined. 
However, many Deep Learning models types and sizes were reviewed on this 
edge device to provide justifiable comparisons.

1.3 Objective and Contributions

The overall objective of this research is to investigate the feasibility of using 
a low-cost edge device for detecting dandelions within turfgrass in real-time. 
Recently in 2019, [2] concludes that real-time detection, meaning at least 
30FPS, of broadleaf weeds in turfgrass is a prerequisite for site-specific man
agement of weeds such as the dandelion. The edge device can run on a 
prototype robot that performs detection in the field without using the cloud. 
The AI model can be optimized to run in real-time and on an edge device with 
integration of a camera system. My specific contributions to the research are:

1) Provide a prototype robotic framework conducive to collecting in-situ 
images of dandelions and other weeds in turfgrass.

2) Perform comparative experiments by training optimized state-of-the- 
art lightweight Object Detection models that discriminate dandelions from 
bermudagrass, using fair comparison guidelines. These models would train 
on self-acquired data, as seen in . Figure 4

3) Evaluate for real-time inferencing speed of each neural network on the 
NVIDIA Jetson Nano 4GB edge device, and elucidate a feasible model that 
is optimized based on accuracy and speed.

The work performed in this thesis will be beneficial to future Deep Learn
ing studies investigating the feasibility of deployment on edge devices. This 
thesis can also assist in providing a Deep Learning framework meant for 
research to those exploring private avenues of weed detection in precision 
agriculture and turfgrass management where price, power, and deployability 
are of concern.
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In this thesis, the research question I am asking is: Can an edge device 
such as a Jetson Nano 4GB detect dandelions in bermudagrass with a mAP 
of at least 85% and a real-time detection speed of at least 30 FPS?

Figure 4: Collecting images in the field.

1.4 Outline

The rest of the thesis is structured as follows: I cover necessary background 
material about subsets of AI, edge device justification, and plant details. In 
the Methodology chapter, including how I trained, deployed, and evaluated 
each AI model. Next, the Results chapter will show key tables and figures 
of my findings, including analysis. Lastly, I reiterate the overall thesis aim, 
highlight key conclusions, expound on problems faced, and discuss future 
work.
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2 Background

This chapter gives a summary of the many sub-fields this research is built 
upon. These include Deep Learning, Convolutional Neural Networks (CNN), 
Object Detection, and performing inference. It concludes with a quick sum
mary about dandelions and bermudagrass, and related work in the literature.

Despite their exponential increase in computing capacity and memory, 
computers still have trouble with performing the most basic human tasks 
such as object and speech recognition. The brain is unrivaled in its ability 
to process visual and speech data. For example, while a human can easily 
discern the events unfolding before them in normal everyday conversation, a 
computer can struggle to identify basic objects in the scene.

The way a computer begins recognizing objects is by taking an image 
as input. An image is simply an array of numbers in a specific order to a 
computer. A computer will then perform some particular operation on those 
numbers and follow an algorithm to classify an object or objects existing in 
the image. It can not only tell you what object it detects but where exactly 
they are too. For example, autonomous vehicles use on-board computers and 
cameras to detect objects in its environment.

Under the umbrella of Artificial Intelligence in Computer Science is a field 
called Machine Learning. In Machine Learning, models are trained with data 
to complete tasks without explicitly being told how to specifically complete 
the task. These models can be trained with data that is labeled so the model 
knows what the correct answer is and is referred to as Supervised Learning.

2.1 Deep Learning

A subset of Machine Learning that grew within the field is Deep Learning. 
Deep Learning allows complicated problems to be solved with large amounts 
of data using artificial neural networks. It is inspired by the functionality 
of the brain, where its neurons are modeled by artificial neural networks 
(ANN). Deep Learning has been used in optical character recognition [3], 
object detection in self-driving cars [4], and forecasting financial trends [5].

Deep Learning came about when using multiple layers in an artificial neu
ral network (ANN) was developed. While Deep Learning has been around 
for decades, it did not start to take root and be widely used until the 2000s. 
In the early 2000s, Computer Vision tasks relied on traditional Machine 
Learning approaches such as hand-picked features from Gabor Filters that 
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were discriminated against with Support Vector Machines (SVM) [6]. Deep 
Learning with images resurfaced in 2012 with the creation of AlexNet and its 
infamous win of the 2012 ImageNet LSVRC-2012 competition by a substan
tial margin [7], beating all other state-of-the-art traditional image classifiers 
at the time. AlexNet was able to excel and win as it finally had an enormous 
data source with ImageNet. It was optimized to perform matrix calcula
tions within a Graphical Processing Unit (GPU), and no longer relied on 
hand-engineered features picked from classical Computer Vision algorithms. 
This the main reason Deep Learning was chosen for Object Detection over 
classical methods in this thesis.

The way Deep Learning detects objects is the computer will train an ar
tificial neural network on a sufficiently large dataset consisting of images and 
labels. It will constantly provide feedback of its current performance through 
a backpropagation algorithm, at which point it will adjust its parameters to 
increase its accuracy by identifying which features are most important in 
an image. This Supervised Learning happens by minimizing the cost func
tion and adjusting the ANN weights so accuracy starts to increase and loss 
eventually converges.

2.1.1 Convolutional Neural Networks

A special type of artificial neural network used in Computer Vision is called 
a convolutional neural network (CNN). A CNN uses an image or video frame 
as input and performs convolutional operations with filters. These filters are 
referred to as the weights of a CNN. The output of convolutional operations 
on the image creates feature maps to be passed onto subsequent layers in the 
network.

CNNs are used in 3 domains of Computer Vision: Image Classification, 
Object Detection, and Semantic Segmentation. Image Classification is the 
process of giving a label to a picture in an attempt to classify what is in 
the scene. For example, a classification model could be fed a picture of the 
beach, and it could output the label ”sand”. There is also a confidence score 
between 0 and 1 for how confident the model is in assigning that label. While 
Image Classification helps classify what is contained in an image, Object De
tection adds an extra step of localizing objects in the image with the use 
of bounding boxes. Not only can multiple objects be detected, but multi
ple different types of objects can be detected. A popular research area in 
Object Detection currently is in driverless Artifical Intelligence. A driverless 
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car must be able to take in multiple objects simultaneously and make in
telligent decisions on how to drive the car. Finally, Semantic Segmentation, 
also known as Object Segmentation, takes Image Classification and Object 
Detection one step further by producing a pixel-wise mask for each object 
detected in addition to generation of bounding boxes, labels, and confidence 
scores. A pixel-wise mask is simply a mask of an object where its boundary 
is at the pixel level. This localization at such a fine-grain is helpful for satel
lite imagery, precise decision-making in autonomous driving, and medical 
imaging. The precision required for detecting dandelions in turfgrass for this 
thesis is conducive to using Object Detection instead of Semantic Segmenta
tion. This is because Semantic Segmentation requires more calculations for 
its output and therefore would be slower than Object Detection.

2.1.2 Object Detection

Object Detection is the process of combining recognition with localization 
in a picture or video. Object Detection plays a significant role in Computer 
Vision objectives and has been around for the last two decades. Localizing 
of objects is a crucial task in many applications such as autonomous driving, 
smart robotics, and video surveillance.

The groundwork for Object Detection was first realized with the Viola- 
Jones face detection framework in 2001 [8]. The algorithm used a simple 
approach for Object Detection by using sliding windows of different scales 
traversing all parts of the image. Next came the use of refined Histogram 
of Oriented Gradients (HOG) as a feature descriptor in localizing objects 
[9]. These early object detectors used handcrafted features and were based 
on Machine Learning. The traditional object detectors peaked when the 
Deformable Part-based Model (DPM) detector won the VOC-07, VOC-08, 
and VOC-09 detection competitions [10]. These competitions were used by 
many researchers to test the performance of their detectors at the time.

Object Detection finally entered the Deep Learning realm with a single 
convolutional network in 2014 with OverFeat [11]. The authors used a multi
scale sliding window approach and a greedy algorithm to aggregate bounding 
boxes to increase detection confidence. In addition, they had to attach a 
regression network at the top of their model in order to predict bounding 
box coordinates. Their work resulted in winning the ImageNet Large Scale 
Visual Recognition Challenge 2013 (ILSVRC2013).

With CNNs, Object Detection initially used a two-stage method. In the 
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first stage, it would generate region proposals. In the second stage, it would 
classify each proposed region if the response is strong enough. Finally, there 
are post-processing steps of refining bounding boxes, eliminating duplicate 
detections, and re-scoring boxes based on other objects in the image. This 
two-stage method has been employed by well-known R-CNN [12], Fast R- 
CNN [13], and Faster R-CNN [14] models where the R stands for ”Region- 
Based”. In Object Detection, each detector has a backbone. Many feature 
extraction networks exist that can serve as the backbone.

Next came single-stage methods for Objection Detection with Single Shot 
MultiBox Detector (SSD) [15] and You Only Look Once (YOLO) [16]. These 
algorithms combine the localization and classification of objects all in one 
step creating a unified end-to-end learning framework. YOLO was seminal 
in the field of Object Detection due to reframing it as a single regression 
problem as going straight from image pixels to bounding box coordinates 
and class probabilities. While single-stage architectures have shown to be 
much faster at inference, they have exhibited lower accuracy compared to 
their two-stage counterparts [17].

The most recent type of object detectors are called Anchor-free. One is
sue is that they provide less flexibility to leverage large-scale data. Examples 
of Anchor-free detectors are CornerNet [18], CenterNet [19], Fully Convo
lutional One-Stage Object Detection [20], and Bottom-up Object Detection 
[21].

2.1.3 YOLO

YOLO, known as You-Only-Look-Once, is a singular neural network that pre
dicts bounding boxes and class probabilities in one evaluation [16]. YOLO 
was the first one-stage object detector in the Deep Learning era [22]. While 
offering state-of-the-art inferencing times, the original YOLO suffered in ac
curacy compared to two-stage detectors such as Faster R-CNN.

The initial implementation of YOLO works by dividing an image into 
an S x S grid where each grid cell is responsible for predicting B bounding 
boxes and confidence scores. It uses Darknet as the feature extractor part of 
its backbone [16]. The author also created a faster version of YOLO called 
Fast YOLO which simply used fewer convolutional layers and fewer filters 
for those layers.

Since 2016, more iterations of YOLO have evolved. The major drawback 
of original YOLO was that it made a significant number of localization errors 

11



and suffered low recall. YOLOv2 introduced batch normalization, variable 
resolution input, anchor boxes, fine-grained features, and an updated Dark- 
net backbone [17].

YOLOv3 improved upon YOLOv2 with a better feature extractor, Darknet- 
53, as well as using a logistic classifier to calculate the probability of an ob
ject belonging to a specific class instead of a softmax function [23]. This 
change was made to remove the assumption each output only belongs to a 
single class. Another improvement was changing the last part of the loss 
function from Mean Squared Error (MSE) to a cross-entropy loss function . 
These improvements led to similar mean Average Precision (mAP) scores as 
Single-Shot Detector (SSD) but were 3 times faster on the Common Objects 
in Context (COCO) dataset [23]. COCO is a large-scale Object Detection 
dataset used by many researchers to assess their model’s performance.

YOLOv4 was able to further improve accuracy and detection speed by us
ing the CSP (Cross-stage Partial Network) approach of scaling their network 
[24]. Scaling a network typically involves deepening it by adding more layers 
or widening by adding more convolutional filters. This approach can lead 
to higher accuracy but comes at the expense of more computation time, re
sulting in slower inference. YOLOv4 was scaled through the CSP approach, 
which partitions the backbone into two parts then merges them back through 
a cross-stage hierarchy [25]. In addition, it has label smoothing, dynamic 
mini-batch size for random shapes, grouped convolution, sigmoid scaling, 
and a new “mish” activation. For data augmentation, it allows one to use 
Mosaic, CutMix, or MixUp. It is important to point out that the most sig
nificant gains of YOLOv4 over YOLOv3 come from accuracy improvements. 
Speed saw only minimal gains in YOLOv4.

YOLOv5 was introduced in May 2020 by Glenn Jocher, only one month 
after YOLOv4 [26]. Jocher was not an original author of YOLO but did 
provide the mosaic data augmentation technique to YOLOv4. YOLOv5 was 
created to improve accessibility, faster training, faster inference, and easier 
deployability. Unlike the previous iterations of YOLO, which were compiled 
with the Darknet framework, YOLOv5 is implemented in PyTorch. Moving 
to PyTorch was one of the biggest factors in YOLOv5 being easier to set up 
and configure, whereas Darknet can have many complicated dependencies 
and is less production-ready. Moreover, YOLOv5 trains much faster due to 
the PyTorch ecosystem being a more established research framework and 
using the Python programming language.

YOLOv5 also implements the CSP approach in its network architecture.
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It uses PANet for its neck to generate feature pyramids. In an object detector, 
the neck is where feature maps are collected from different stages. Feature 
pyramids assist models in generalizing objects at varying scales. This trans
lates to better performance when detecting objects on unseen data. The 
detection head of the network stayed the same as the one used in YOLOv4 
and YOLOv3. It utilizes the Leaky ReLU activation function throughout 
the network. Anchor boxes are auto-learned based on the distribution of 
bounding boxes in the custom dataset.

YOLOv5 uses a cosine learning rate (LR) scheduler. Learning rate adjust
ments are critical in training Deep Learning models. Traditionally learning 
rate is updated through a step decay in the training process. The issue with 
this is that these steps are the same at the beginning and the end of training. 
A cosine learning rate scheduler will take larger steps in the beginning to ap
proach local minima faster, but over the training will gradually decrease as 
not to cause divergent behavior in the loss function. This cosine decay in the 
learning rate helps improve accuracy [27]. All these features make it a CNN 
worth testing in finding a feasible detector that can run on an edge device in 
real-time.

Currently, YOLOv5 suffers from a couple of drawbacks. It is still under 
active development and can potentially be buggy as the author is still testing 
new code and fixing old code. It borrowed the ”YOLO” moniker and iter
ated its version to 5, which was not looked upon favorably in the research 
community as Glenn Jocher is not an original YOLO author, nor has he pub
lished a paper on YOLOv5. Lastly, YOLOv5 is a port of YOLOv4 but with 
a handful of questionable novel improvements that would garner its iterated 
title.

2.1.4 SSD and Faster R-CNN

Single Shot MultiBox Detector (SSD) was the second one-stage object detec
tor to emerge from the Deep Learning era. SSD introduced multi-resolution 
and multi-reference techniques which significantly increased detection accu
racy over YOLO at the time. When SSD premiered in 2016, it boasted a 
74.3% mAP on the VOC2007 dataset along with a real-time inference speed 
of 59 FPS on an NVIDIA Titan X [15].

The backbone of SSD is MobileNetV2, a high-performing feature extrac
tor. At the top of the SSD detector are convolutional feature layers decreasing 
in size which all allow for predictions. This is different than YOLO which 
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only operates on a single scale feature map. Similar to YOLOv3 and Faster 
R-CNN, SSD uses anchor boxes to predict bounding box offsets and per-class 
scores. SSD stands out from those other two detectors in that it applies these 
default anchor boxes to several feature maps of different resolutions, with the 
intent of making their detector scale-invariant.

An area that SSD struggles in performance is on smaller objects. This is 
due to small objects having no representations on the smallest convolutional 
layers at the top of the detector. Even with this shortfall, SSD is still a very 
attractive object detector due to its balance of accuracy and speed. It can 
offer real-time inference at state-of-the-art accuracy, making it an easy choice 
to test weed detection in this thesis.

The R-CNN model was influential in serving as the base for object detec
tors that came after it. R-CNN would first extract proposals with a selective 
search, then extra features with a feature extraction backbone, and lastly 
classify using a Support Vector Machine (SVM) [12]. Fast R-CNN improved 
the speed of R-CNN by combining the extraction of features and classification 
all in a single CNN [13]. Faster R-CNN used a more sophisticated approach 
by using a novel Region Proposal Network (RPN) that discarded the use of 
time-intensive selective search, thus improving speed. Despite these improve
ments, it still suffered from the high computational overhead of its RPN [14]. 
Its 2 stages give it superior accuracy but comes at the expense of detection 
speed as more computation is required.

2.1.5 Transfer Learning

It is common for Deep Learning-based object detectors first to be pre-trained 
on large datasets such as ImageNet [7] or COCO [28]. The reasons for this 
are a) data collection and labeling can be out of scope and time frame for 
many research projects, b) generalization is improved using a pre-trained 
network, and c) it cuts down training time as many features were already 
learned elsewhere.

The process of using a pre-trained network and then retraining it based 
on newly introduced classes is called Transfer Learning. Specifically, Transfer 
Learning is achieved in Object Detection by importing the weights that were 
optimized on another dataset. The model architecture used to train, for 
example on MS COCO, must be the same architecture for the model that 
will be used for Transfer Learning. Not all the weights have to be used. For 
example, only the weights from the first 10 convolutional layers of a YOLO 
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model can be frozen and imported into a subsequent new untrained YOLO 
model.

2.1.6 Data Augmentation

Data augmentation is the process of artificially increasing the amount of 
data to make a more robust model that is less susceptible to overfitting and 
making it more accurate. It is a data analysis technique that either creates 
slightly modified copies of the data or newly created synthetic copies.

For Object Detection, data augmentation means adding more images or 
video frames to increase the size of the dataset, specifically images used in 
training. The reason to create augmented images is that it is impossible 
to capture images that are genuinely reflective of all the real-world scenar
ios that a CNN is trying to solve. Typical image augmentations would be 
adding rotations, flips, changing color scale, and blurring. The authors in 
[15] were able to see an 8.8% improvement in mAP, a common accuracy met
ric in Object Detection, when training their model using data augmentation 
techniques.

2.2 CNN Performance

Convolutional Neural Networks consist of many layers, with most of them 
being convolutional layers. Each of these convolutional layers will have k 
kernels, also known as weights. A kernel is simply a filter that is used to 
extract features from the input image using convolutions. The kernel slides 
over the image performing the dot product within each sub-region of input 
values. Each of these kernels will be of varying sizes with a width (w) and 
height (h). The convolutional layer can then transform the input image with 
width (W) and height (H) and number of channels (C) into W x H x k 
dimensions. The kernels can be calculated individually and simultaneously. 
This is the reason GPUs are the preferred processor with CNNs as they 
benefit from the GPU’s powerful parallel processing abilities, seeing order-of- 
magnitude improvements over CPUs [1]. This leads to a decrease in training 
time and increase in inferencing speed from the convolutional layers. This 
parallelization is what becomes a deciding factor in choosing an edge device 
to deploy the trained model to. This is because each edge device will have 
different underlying architecture where some are more beneficial than others 
for performing Object Detection. The Jetson Nano, for example, can process 
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up to 128 kernels in parallel before seeing any significant reduction in frames 
per second (FPS) [29].

CNNs can have very high accuracy but it comes at the cost of higher 
computational complexity, which requires a high-performance GPU. This 
increased accuracy comes from an increase in the number of convolutional 
layers and kernels, thus making the network deeper and more complex. More 
convolutional layers and kernels allow the model to learn more discrimina
tive features of the image and therefore be able to detect objects more pre
cisely. However, this increase in complexity of the model means an increase 
in weights and number of calculations needed to do one forward pass through 
the network to detect an object. As edge devices lack the performance of a 
standard high-end GPU such as the NVIDIA Tesla V100, there needs to be a 
compromise in model depth and complexity in order to perform in real-time. 
This trade-off relationship between accuracy and speed can be seen in the 
YOLOv5 models where the smallest model has the fastest speed with the 
lowest accuracy, and the largest model has the slowest speed but the highest 
accuracy [26].

A library that can significantly increase CNN performance is Compute 
Unified Device Architecture (CUDA), developed by NVIDIA. CUDA is a 
software layer API that allows a developer to perform general-purpose pro
cessing on CUDA-enabled GPUs. This allows computer scientists to program 
the convolutions of all the kernels in a neural network onto the GPU, which 
has much greater parallel processing power than a CPU. Therefore, it is 
worth exploring edge devices that had a CUDA-enabled GPU.

TensorRT is also a framework by NVIDIA, written in CUDA, that opti
mizes Deep Learning models’ inference on a GPU. One of the primary func
tions of TensorRT is providing quantization to models through the reduction 
in the precision of data types representing the weights and parameters of 
the models. Traditionally inference is run at single-precision floating-point 
(FP32) but using half-precision floating-point (FP16) speeds up a forward 
pass through a network with minimal reduction in accuracy. This is because 
FP16 precision reduces the number of cache accesses by allowing two times 
the amount of data to fit in the same cache line. Faster inference can further 
be achieved over FP16 precision with 8-bit integer (INT8) precision. Ten- 
sorRT functions in 2 stages, optimization and deployment with their Runtime 
engine. The optimization step is only performed once, similar to building a 
program, and then is executed to perform inference with the Runtime engine.

Finally, there exists a deep neural network library that is purported to be 
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optimized for inference on NVIDIA Jetson line of boards called tkDNN. It is 
built with cuDNN and TensorRT primitives that can exploit Jetson boards 
to gain maximum performance [30]. This library was tested, along with 
TensorRT, to determine the feasibility of real-time inference in my custom 
trained object detectors.

Choosing a lightweight CNN, and pairing it with a compatible inferencing 
library, is therefore the important first step in achieving real-time detection 
on an edge device. Next, the trade-off relationship between model complexity 
and speed must be explored on specific edge devices to fully determine the 
feasibility in real-time detection with appropriate accuracy.

2.3 Real-Time Inference Speed

In Object Detection, inference is the process of using a trained CNN to make 
predictions on previously unseen data. Inference time is typically measured 
in frames per second (FPS) or milliseconds (ms). Device-specific inference 
speed is a measurement that starts from the time an image is captured to 
when a predicted output is made. For research purposes and comparability, 
inference time can also be measured as execution only, which does not include 
pre and post-processing steps.

An example for measuring inference speed is using the training platform 
Darknet’s inference function [31]. Inference speed is dependent on the com
putational power of either the CPU, GPU, or TPU. When considering Com
puter Vision applications dealing with low-resource edge devices, faster in
ference times are needed for real-time detection. The authors of YOLOv4 
[32] defines real-time as 30 frames FPS or greater, and therefore will be the 
threshold attempted to meet in the trained object detectors. While 30 FPS is 
an arbitrary number, it is a common threshold used by others in the research. 
Real-time inference is important for this thesis as well since the model will 
be deployed to an autonomous robot. The faster the model can perform 
inference, the faster the robot can move and process data. In addition, if the 
model was deployed to a UAV as well, inference speed becomes even more 
important.

The total execution time of running an object detector occurs in 3 phases. 
First is pre-processing where the image or video frame is converted to a 
proper input required by the network. Second is the actual inference where 
the image does a forward pass through the network. Lastly is post-processing 
that involves fine-tuning final bounding box outputs. The total of these 3 
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phases is the end-to-end latency which is the time elapsed from giving a CNN 
an input to bounding box determination.

While the scope of this thesis does not involve further post-processing of 
bounding boxes such as creating [x,y] coordinates for precision spraying, it is 
important to consider end-to-end latency for achieving real-time inferencing.

To optimize inference speed, there are three main strategies to take into 
account, outlined in [30]. These are network model design, model compres
sion, and platform. Model design can be configured to help execution and 
memory latency by reducing the number of parameters in the CNN model. 
This can be achieved by selecting models with fewer convolutions, fewer ker
nels, or choosing a smaller input size. Model compression can come in the 
form of quantization, parameter pruning after training, and knowledge distil
lation. All these methods can provide a significant increase in the through
put of the CNN model. Lastly, the platform a model is implemented on 
can significantly effect model performance. Most recently, with the advent of 
General-Purpose computing on Graphical Processing Units (GPGPU), CPUs 
have been dominated by GPUs as the platform of choice in Deep Learning 
applications due to its superior parallelization performance.

2.4 Object Detection Accuracy

In Image Classification, the goal is to determine whether the image belongs 
to a specific class or not. Its performance will determine two main metrics, 
its precision and recall. Object Detection is more complicated as the question 
must be asked whether the image has the correct class, and if it does, was 
it localized properly. Therefore, it also uses precision and recall, along with 
Intersection over the Union (IoU).

In the context of this thesis, precision is the measure of successful weed 
detections out of all detections the model makes. In formula, precision is the 
number of true positives (TP) out of the number of true positives plus false 
positives (FP):

TP
precision = TP + FP (1)

A TP in the context of dandelion detection means the object detector 
made a prediction about the location of a dandelion and that the prediction 
was correct. For the prediction to be correct about the location of a dan
delion, a specific threshold must be met in bounding box overlap between 
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the ground-truth label and predicted bounding box, which will be discussed 
shortly. An FP means the detector made a prediction about the location of 
a dandelion, but the prediction was incorrect. The following table shows the 
confusion matrix output based on predictions of an object detector. Note, 
true negatives (TN) are ignored since it denotes there was a failure to detect 
an object that does not exist. A truth table on Object Detection accuracy 
is seen in Table 1.

Table 1: Object Detection truth table.

Labeled Predicted Confusion Matrix
Positive Positive TP
Positive Negative FN
Negative Positive FP
Negative Negative TN

Recall is the measure of successful weed detections taking into account 
weeds that were failed to be detected. In formula, recall is the number of 
true positives out of the number of true positives plus false negatives (FN):

TP
TP + FN (2)

Overall, a high precision indicates a high success rate of successful de
tection of dandelions when the model makes a prediction. A high recall 
indicates a high success rate of detecting dandelions with a low failure in 
detecting target weeds.

As mentioned, IoU is used to determine accuracy in Object Detection. 
The IoU threshold used in the evaluation of the MS-COCO dataset is 0.5 
[28], which will also be used for this thesis. This threshold means anything 
above it counts as a TP and anything below counts as a FP. IoU calculation is 
the overlap ratio between the predicted bounding box and the ground truth 
label over the total area of both the predicted bounding box and ground 
truth label box:

loU = BBoverlap (3)
BBunion

Currently, the “de facto” metric in object detectors is mean Average 
Precision (mAP). It is the primary metric used in YOLOv4 [32] and SSD [15],
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specifically mAP@0.5. Evaluating mAP@0.5 means measuring the Average 
Precision at a 0.5 IoU threshold across all classes in the dataset. Recall and 
mAP@0.5 are the two metrics used for this thesis.

In the case of dandelion detection and precision spraying, recall is not as 
important as precision. It is better for the robot to miss a weed than it is 
to detect a weed that is not there, meaning a false positive. This is because 
the robot will make more than one pass in turfgrass, so it will have more 
opportunities to make a correct prediction. A mapping algorithm would 
handle preventing spraying weeds more than once. If it has lower precision 
and is making many false positives, the robot is spraying for weeds that 
do not exist. This results in wasted product, wasted power, and reduced 
efficiency.

2.5 Edge Device

When choosing an edge device to perform Deep Learning, it is important to 
select those that offer a GPU or TPU. A GPU and TPU both offer superior 
parallel processing ability over a CPU. Extending the edge device to be used 
on an autonomous robot creates new requirements to consider, such as power 
consumption, connectivity, and adaptability.

The Jetson line of devices from NVIDIA offers excellent flexibility for 
a robot performing Deep Learning. The scope of an autonomous weeding 
robot in Groundskeeping means it is physically small and is intended to be 
used in smaller commercial and consumer environments. With these require
ments in mind, the edge device used for this thesis was the Jetson Nano 4GB 
Developer Kit. The Developer Kit option means the Nano comes integrated 
with a board with connections for USB, Ethernet, HDMI, audio, and power. 
The Jetson Nano offers the right balance of power, performance, and price, 
achieving 472 GFLOPS on 5W of power for only $99. The more advanced 
Jetson TX2 requires 1.5x more power, while the top-of-the-line Jetson NX 
requires 2x the power. The Jetson Nano is also suitable for serving as the 
central computer for a mobile robotic platform as its equipped with a 40-pin 
header with onboard GPIO, I2C, I2S, UART, power, and PWM. Specifically, 
the Jetson Nano 4GB is NVIDIA’s entry-level embedded device of their Jet- 
son line of products. It is a System on Chip (SOC) with a Quad-core ARM 
CPU, 128-core Maxwell GPU, 4GB of DDR4 memory, and ability to attach 
4 cameras [33]. The Jetson Nano 4GB is shown below in Figure 5.
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Figure 5: Jetson Nano 4GB Developer Kit [33]

NVIDIA also offers a 2GB version of the Jetson Nano for a slightly lower 
price of $59. The double memory capacity you get in the 4GB Nano for only 
$40 more makes it a much better option when dealing with the high memory 
needs of a CNN.

The camera used to collect the dataset was the Raspberry Pi High Qual
ity Camera. The Raspberry Pi High Quality Camera is the newest camera 
offering from the Raspberry Pi Foundation, with significant improvements 
over its predecessor, the Camera Module V2. The High Quality Camera 
boasts an upgraded 12.3 megapixel Sony IMX477 sensor, adjustable back 
focus, and C/CS mount. It is important to note that the Raspberry Pi High 
Quality Camera does not have an actual lens, unlike the Camera Module

21



V2, which must be purchased separately. An Arducam 8mm focal length 
lens with manual focus and adjustable aperture was used to get clear shots 
on the robot prototype.

Figure 6: Raspberry Pi High Quality Camera with lens, attached to Rasp
berry Pi 4.

2.6 Dandelions and Bermudagrass

Weed management in lawns is a common task performed in the Groundskeep- 
ing industry. A particularly invasive weed in lawns is dandelion (Taraxacum 
officinale), seen in Figure 7. It has a basal rosette base with a strong taproot. 
The leaves are deeply serrated and have a lance shape [34]. Managing dan
delions in lawns can be a large monetary and time cost. It can be removed 
manually by severing its aggressive taproot, or sprayed with a herbicide. If 
the tap root is not removed during mechanical removal, the dandelion will 
grow back. If only part of the dandelion is sprayed, it can survive and grow 
back as well. Therefore, it must be sprayed with full coverage or have its 
tap-root removed to be killed off fully. Using an object detector to iden
tify dandelions with bounding boxes means precision microsprayers could 
apply full coverage of herbicide application to each one detected. It should 
be noted that there exists dicot-specific herbicides, meaning they will kill 
broadleaf weeds like dandelions but will not harm the grass.
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Figure 7: Dandelion weed in grass.

Bermudagrass (Cynodon dactylon) is a type of turfgrass that is also con
sidered invasive in the United States. Its invasiveness makes it a great grass 
for playing fields and golf courses because it self-repairs. For example, if 
a chunk of grass gets removed from a golf swing, bermudagrass will even
tually grow laterally to cover it up due to its horizontally creeping stolons. 
Bermudagrass is known for how well it looks manicured, exhibiting a uniform 
blanket-like appearance, as seen at golf courses. If dandelions start to take 
root, it throws off the appearance and no longer is aesthetically pleasing. 
In addition, dandelions cause unevenness in bermudagrass which can be a 
tripping issue on sports fields or can cause a golf ball to veer off its intended 
course. This means managing dandelions in bermudagrass is a worthwhile 
task for Grounds departments. Having an affordable autonomous robot that 
could take over this task is the basis for this thesis.

2.7 Related Work

Implementations of plant detection in the field and lab have been a thorough 
research topic dating back to the 1970s. Some of the earliest work in Machine 
Vision for plant detection came from [35]. Hooper, Harries, Ambler developed 
a light sensor that could distinguish plant material from soil based on light 
absorption ratios. In the 1990s, research on plant recognition happened with 
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a real-time intelligent weed control system that used Computer Vision and 
precision chemical application of in-row weeds in commercial tomato fields 
[36]. In the early 2000s [37] used a hybrid machine learning and neural 
network approach to classify leaves using Ontology.

2.7.1 Precision Agriculture

Research in precision agriculture using CNNs has been abundant. For ex
ample, [38] trained a CNN to detect weeds among sugar beets. They used 
Near Infrared (NIR) photos to create a segmented soil mask before train
ing their CNN. Where these authors only captured images of plants in early 
growth stages, [39] used optimized Transfer Learning parameters to retrain 
ResNet50 based CNN to detect weed and crop species at differing growth 
stages. Machine Learning and Deep Learning approaches were compared to 
detect weeds within the canola crop [40]. They used a novel Local Binary 
Patterns (LPB) approach to show it could get better accuracy and faster 
inference than VGG16, VGG19, ResNet50, and InceptionV3 CNNs for im
ages taken in the field. A Pattern Recognition algorithm was developed by 
[41] to classify weeds from crops in lettuce rows, along with building a spray 
map that can be used for precision application of herbicide to the weeds. 
This algorithm was implemented into a Computer Vision platform mounted 
on a tractor that could travel 1.5 MPH. The main drawback of their recog
nition system is their reliance on spraying the crop early on with a special 
compound that is easily distinguished from weeds in their algorithm.

2.7.2 Robotic Weeding

There have been numerous studies on Machine Vision in robotic weeding, 
ranging from path guidance [42] to detection through LIDAR [43]. The 
authors developed an autonomous robot using LIDAR to detect over 20 dif
ferent species with 98% accuracy. The point clouds from the LIDAR sensor 
were used as features in their Machine Learning algorithm, making it robust 
against illumination and atmospheric conditions. A more recent example, 
[44] demonstrated a robot that could kill weeds with lasers. It used a color 
segmentation algorithm to crop plants from the frame, then size estimation 
to distinguish the weed from the crop. The weed detection coordinates were 
translated into real-world coordinates and sent to two lasers on gimbals. The 
robot had limited mobility though, and could only drive forward, stop, take
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a picture, processing the data and perform weed elimination, then move for
ward again. A Siamese Convolutional Neural Network for generic object 
tracking was trained by [45] and deployed it on a Jetson Nano on a robotic 
platform, achieving 10 FPS.

A novel bark image dataset was curated and trained with a CNN to 
classify trees based on their bark with an accuracy of 97.81% with majority 
voting using Transfer Learning with ResNet34 trained on ImageNet [46]. 
Another example is from [47], which trained a CNN from scratch to perform 
Image Classification on 6 classes of fruit growing on trees. They showed 
real-time detection using a CNN was possible with an inference time of 0.03 
ms using a high-performance GPU. Similarly, [48] investigated the feasibility 
of near real-time Object Detection on an Underwater Autonomous Vehicle 
(UAV). They trained a Faster R-CNN model and deployed it on an NVIDIA 
Jetson TX1, GTX 1080, and GTX970 on a mobile platform on the UAV. 
The made for mobility platform, Jetson TX1, only managed to achieve 0.55 
FPS, while the GTX 1080 achieved 5.8 FPS.

2.7.3 Plant Detection with YOLO

There is extensive literature on Object Detection using YOLO, but here I 
mention a few relevant papers on plant detection using YOLO that helped 
shape part of this thesis. A YOLO object detector was used by [49], and pro
duced marginal increases in mean Average Precision (mAP) while suffering 
significant inference speed reduction when increasing image input size from 
320 x 320 to 416 x 416 and 608 x 608. In addition, they were able to get 
substantial inference speedup, 2.5x, from 16-bit floating point quantization 
via TensorRT implementation in their model. Using an improved YOLOv3 
model based on DenseNet, [50] detected varying growth stages of apples in or
chards. While they achieved real-time detection using 512 x 512 input image 
size, this was done using an NVIDIA Tesla V100 server. This is a common 
theme in plant detection studies, where they focus mainly on accuracy and 
performance in the lab. They rarely test their models in an environment 
where they would be used in production, such as on an edge device. An
other example is [51] whom successfully deployed their YOLOv3 algorithm 
to a Jetson Nano to be used in a student UAV competition, though failed 
to report inference results. YOLOv3-tiny has been used to detect goosegrass 
within strawberry and tomato crops [52]. Their model was pretrained with 
the COCO dataset and used data augmentation techniques such as color 
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alteration, cropping, and resizing. Most recently, [53] used a YOLO object 
detector with a variety of backbones to detect weeds among lettuce crop rows 
using a Jetson TX2, getting real-time inference of 33 FPS and achieving up to 
0.93 mAP. Lastly, [29] demonstrated the superiority of the GPU on an edge 
device over a CPU by measuring inference times in a YOLO-based model.

2.7.4 Relevant Studies

Finally, I highlight some key studies that my thesis builds upon in the re
search. The authors in [54] used Computer Vision to detect dandelions and 
their centers using the Mean Centroid Method. They used classical image 
processing steps in the detection process such as sharpening, color thresh
olding, low pass filter, and binarization. The limitations of this study are 
that it used lab-like conditions to boost their accuracy of centroid detection 
as well as using hand-picked image processing steps, which is not as robust 
as Deep Learning. Also using traditional image processing, [55] used edge 
detection to identify weeds in ornamental grass and sports turfgrass. They 
identified different filters to convolve the image, resulting in higher accuracy 
of weed detection. A shortfall of this study is that the authors only saw high 
accuracy after they first removed dirt, leaves, and non-uniform objects in 
the images, thus not making their algorithm very robust. The first research 
to investigate the feasibility of weed detection in turfgrass using CNNs was 
done by [2]. They trained two types of CNNs, GoogLeNet and VGGNet, for 
Image Classification of dicot weeds in actively growing bermudagrass. They 
also trained an object detector using DetectNet to identify a weedy monocot 
in dormant bermudagrass. Later that year, the same authors did a similar 
study but investigated detection in perennial grass, instead of bermudagrass, 
of different types of monocot and dicot weeds [56]. The following year they 
finally examined broadleaf weed detection in actively growing bermudagrass 
[57] using Image Classification.

Until now the authors showed the possibility of weed detection in turf
grass using Image Classification and Object Detection. None of their papers 
have shown detection results on an edge device, having only used powerful 
Desktop or Server GPUs to measure inference. While they have performed 
Object Detection on grassy weeds in actively growing bermudagrass, they 
have not done so with broadleaf weeds in actively growing bermudagrass. 
My thesis fills in this gap by showing object detection of a broadleaf weed 
like dandelion is possible in actively growing bermudagrass, as well as eval
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uating the feasibility of real-time detection performance on an edge device.
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3 Methodology

To test the feasibility of a neural network’s real-time performance, data must 
be gathered. For a CNN, the data input are images. This chapter describes 
the data gathering process, CNN model training and optimization, and finally 
inference evaluation. As noted in the last chapter, the research into dandelion 
weed recognition within bermudagrass stops at the lab during inference. This 
chapter will extend the research by demonstrating deploying an optimized 
CNN model, trained on a self-gathered dataset, to an edge device. Results 
gathered from the model training and inferencing will be discussed.

Many studies involving CNN model evaluation leave out key details needed 
for providing a fair comparison. This is because either the author failed to 
recognize the importance of such details, or some of these details are ab
stracted away in the training and inferencing process. To keep a fair com
parison while evaluating my models, I kept a couple key configurations con
stant across each evaluation. First, when comparing separate object detector 
architectures, I use the same resolutions. I train on the same dataset and 
measure metrics using the same validation images across all models. All 
training is done via Transfer Learning using pre-trained weights on the MS 
COCO dataset. All training is performed using the stochastic gradient de
scent (SGD) optimizer. I provide inference speed all as one metric, FPS. I 
run inference for all models on the same edge device, the Jetson Nano. The 
Jetson Nano was set up to use MAXN power mode for each evaluation, along 
with jetson_clocks being enabled. I use FP16 precision and batch size of 1 
while performing inference. The exception to this is running inference using 
Darknet on the Jetson Nano. It is impossible to use FP16 precision with 
Darknet as Tensor Cores are required, which is lacking on a Maxwell GPU. 
Lastly, all FPS results include pre-processing and post-processing operations 
and were measured on the same video file.

3.1 Dataset

While some research has been done on dandelion detection in turfgrass, either 
the dataset was private or not conducive to my application as the ground 
sampling distance was too large. Studies mostly took pictures 3 to 5 feet off 
the ground, whereas my proposed robot prototype would take pictures at less 
than 1 foot. Therefore, I decided to curate my own dataset. They would be 
reflective of dandelions growing in bermudagrass in the Southern California 
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region.
Photos of dandelions were collected at varying growth stages. Dandelions 

were captured from as young as its two-leaf seedling stage to full basal rosette 
flowering stage, which includes a yellow flower. It is important to capture 
images that are indicative of real-world situations, and I made sure to collect 
images at almost all plant sizes. Figure 8 demonstrates the distribution of 
ground-truth label sizes in the dataset.

In checking how big of a dataset to build, [50] showed any number of 
images exceeding 3000 in the training set did not have a further significant 
influence on their YOLO model. They used a modified YOLOv3 model to 
detect varying growth stages of apples in an orchard.
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Figure 8: The distribution of ground truth label sizes based on 640x640 
image size. Each box represents an ideal anchor box size for training YOLO 
models.

3.1.1 Data Collection

Initially, I wanted to collect images from California State University Chanel 
Islands, which has two playing fields on its campus. One of them, Potrero 
Field, contains kikuyu grass. While this is a turfgrass, it had little to no 
dandelions present in it as the grass is maintained at higher than average 
mowing height. By letting the kikuyugrass grow high, it chokes out and 
denies sunlight to other weeds hoping to take root. The other primary playing 
field, North Field, contains a multi-species mix of grasses, including rye, 
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bermudagrass, and fescue. While North Field is typically maintained more 
often, it was not being maintained most of 2020 due to Covid-19 causing 
personnel and resource reduction in the Grounds department.

Therefore, I decided to find a playing field close by with bermudagrass 
that still had proper upkeep. I discovered Pleasant Valley Fields, located 5 
miles from the campus of CSUCI, shown in Figure 9. It is a large playing field 
consisting of 12 FIFA-sized soccer fields with a hybrid bermudagrass that is 
mowed under 1”. Bermudagrass is traditionally mowed at 1” or below at golf 
courses, recreation fields, and sports fields.

Figure 9: Pleasant Valley Fields - location of data gathering.

A hybrid bermudagrass is the prominent turfgrass used in natural playing 
fields and golf courses across the United States. Due to the field’s size, there 
was plenty of dandelions to take pictures of as well. This made for a suitable 
location to collect data and be representative of general sports fields for future 
studies conducting similar research on Object Detection in bermudagrass.

I did not opt for taking photos by hand while walking the field, as many 
studies do. Instead, I collected the photos that would replicate how an au
tonomous robot weeder would collect data. This required building a pro
totype robot equipped with a computer and the same type of camera that 
would be used in production. I also framed the photos using this prototype 
to replicate lighting conditions which can be a major source of error in Deep 
Learning training when not accounted for. Using in-situ data, and not arti
ficially creating it, will make my trained model more robust and transferable 
to real-world production.

Photos were taken on 6 days in December 2020, February 2021, and 
March 2021. In total, 1714 raw images of dandelions and background were 
collected. These images served as the training, validation, and test sets.
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The dataset was balanced with 50% of the photos containing dandelion and 
50% containing only bermudagrass as background. It is important to have 
a balanced dataset as training only on images with dandelion can lead to a 
high amount of false positives. The photos were taken with a Raspberry Pi 
High Quality camera attached to a Raspberry Pi 4 8GB computer, as seen 
in Figure 10.

Figure 10: Raspberry Pi High Quality Camera with Arducam 8mm lens, on 
top of robot prototype, along with a power bank.

An Arducam C-Mount lens, with 8mm focal length, was attached to the 
camera. The photos were captured at 640 x 640 resolution with the PiCam- 
eraApp Version 0.2 [58] running on Raspbian 10 Buster. A JPG format was 
used. A 640 resolution was chosen for two reasons. First, the YOLO object 
detector requires a resolution divisible by 32 for its input. Second, a 640 
resolution seemed the upper bound for possibly achieving real-time inference 
based on previous studies. I used a WiFi hotspot on my Motorola G6 An
droid phone and connected both my Apple Macbook Pro and Raspberry Pi 
to it. This allowed me to use VNC Viewer on my laptop to remotely connect 
to VNC Server on the Raspberry Pi and share its desktop. I was then able 
to use PiCameraApp to preview photos for consideration before capturing 
them in the field.

While all images were captured with the robot stationary, video capture 
was also investigated. Using the same 640 x 640 resolution, video was able 
to capture images of dandelions clearly, without blur, by using a sufficiently 
high shutter speed. This was done with the Raspberry Pi’s “raspivid” library. 
Shutter speed is also adjustable using the Jetson Nano.
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Figure 11: Robot prototype at Pleasant Valley Fields.

The robot prototype’s main body consisted of a box with dimensions 
229 mm x 229 mm x 330 mm. The Raspberry Pi High Quality camera, at
tached to the Raspberry Pi, was mounted on top of the box with a bird’s eye 
view of the grass. The grass to camera distance was approximately 280 mm. 
The measured ground sampling distance was 2.79 pixels/mm. The box body 
had 2 sets of wheels mounted on the bottom of it for mobility. An LED ring 
light was mounted on the inside top of the box to provide a uniform lighting 
scheme of the turfgrass. Utilizing artificial light, and blocking out natural 
light using the box body, is important in collecting a consistently illuminated 
dataset. Using the LED light also means future inference will not be subject 
to the variability of sun and cloud conditions. It can also be used during the 
night as it is not dependent on sunlight. The camera lens was placed through 
the hole of the LED ring light to provide parallel lighting to the lens, as seen 
in Figure 12. An Anker 20,000 mAh 18W power bank was used to power the 
Raspberry Pi and LED ring light.
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Figure 12: How the camera lens is positioned within the LED ring light.

The Raspberry Pi was used instead of the Jetson Nano for data collection. 
I originally had planned to test inference on the Raspberry Pi as well. Time 
constraints and further reading into the literature showed the Raspberry Pi 
would be an inferior edge device for Object Detection over the Jetson Nano. 
Fortunately, both the Raspberry Pi and Jetson Nano run on a Debian-based 
distribution of Linux. I can replicate the exact photo collection process on 
the Nano as I did on the Pi, including using the same CSI-based camera and 
lens.
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3.1.2 Data Preparedness and Augmentation

In Object Detection, training data must have ground truth labels. These 
ground truth labels are bounding box coordinates denoting the location of 
objects in an image. I utilized the software web application Roboflow [59] to 
annotate the ground truth labels manually.

A common occurrence in training Deep Learning models is overfitting. 
Overfitting is when a model starts to memorize the patterns in the training 
data too well. When a model is overfitting is introduced to new data, it will 
have subpar accuracy compared to the data it originally trained on. One way 
to help with overfitting is through data augmentation. Data augmentation is 
a way to increase the amount of data the network is trained on by perform
ing specific techniques that generalizes the data [15]. For a CNN that uses 
images, data augmentation means the images are altered to be beneficial to 
model training.

Another option to help reduce overfitting and help with model accuracy 
is performing a pre-processing step to each image. My goal is to achieve real
time performance in Object Detection which is dependent on the Computer 
Vision pipeline throughput. I opted not to include a pre-processing step as 
it would add increased time in the pipeline. Also, the attractability of using 
a Deep Learning model is that it learns features on its own, and it cuts out 
the need to hand chose them in a pre-processing step.

In Roboflow, I performed four data augmentations to my data. These 
included flipping horizontally and vertically, rotating 90 degrees clockwise 
and counter-clockwise, rotating between -45 degrees to +45 degrees, and 
blurring at 0.25 pixels. On some datasets, augmentation can be harmful 
to accuracy and getting the training to converge. For example, you would 
not want to use the horizontal flip data augmentation technique to a self
driving car dataset, as the model would never come across cars driving upside 
down in real life. The weeding robot would view the dandelion in many 
different orientations though. The dandelions it approaches can be in any 
type of rotation and positioned anywhere in the frame. Thus, I chose the 
data augmentations to make my dataset more robust. There was no need to 
perform any type of illumination-based data augmentations as my dataset 
was uniformly lit by the LED light.

After augmentation, the dataset was expanded to 4285 images. The 
dataset was now more robust and less likely to overtrain on irrelevant fea
tures. The training set consisted of 3858 images. The validation set consisted 
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of 342 images, and the test set had 85. Only the training set had augmented 
images included in it.

Figure 13: Example of augmentations done on the dataset.

3.2 Training

A variety of software frameworks were used for training. They were Dark- 
net, an open-source framework written in C that takes advantage of CUDA 
in training and inference. I also used PyTorch, a library in Python that is 
easy to use and also integrates with CUDA. Lastly, I used NVIDIA’s Trans
fer Learning Toolkit version 3.0. This is NVIDIAs most recent offering in 
building CNN models that are ready for production.
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Varying training hyperparameters such as learning rate and epochs were 
examined in preliminary work (data not shown). Eventually, I converged on 
a set of hyperparameters that were maximizing accuracy, that are discussed 
at the beginning of this chapter. When training an object detector, a specific 
batch size is chosen. Images are randomly selected in each batch which makes 
the gradient descent problem a random process as well. To filter out noise 
in this random process, it is better to pick larger batch sizes as they better 
represent the dataset as a whole. These bigger batch sizes enable you to 
increase the learning rate as progress will be larger along the gradient [27]. 
Therefore, I chose the largest batch size for each training that the video card 
would allow in memory. There was no single batch sized used across trainings 
as training on different resolutions meant having to use different batch sizes.

3.2.1 Computation Environment

The environment where training of Deep Learning models generally happens 
locally on a workstation, in the cloud, or a containerized environment such as 
Docker. The cloud environment has the least amount of time setting up but 
can result in high costs long term. A containerized environment is beneficial 
in setup time and proven compatibility of its software stack. I ended up 
choosing a local environment for training to maximize my understanding of 
the entire training process and was already in possession of a CUDA-capable 
graphics card.

The Operating System (OS) used was Ubuntu Desktop 20.04.1 LTS Focal 
Fossa. All training was performed on an NVIDIA RTX 2070 Super. CUDA 
version 10.2, cuDNN version 8.0.5, and NVIDIA 455.45.01 drivers were in
stalled as well.

The computation environment that performed inferencing was on the 
Jetson Nano. The Nano comes with Ubuntu 18.04.5 LTS along with NVIDIA 
Jetpack 4.5.1 SDK. This includes CUDA version 10.2, cuDNN version 8.0.0, 
TensorRT version 7.1.3, and NVIDIA L4T version 32.5 graphics drivers.

3.2.2 YOLOv4 Darknet

Darknet is the standard training platform for YOLO and was written orig
inally to train YOLO object detectors. YOLOv4 was chosen over YOLOv3 
as it provides many new features that provide an increase in accuracy and 
speed on the same MS COCO dataset. One such feature used was mosaic, 

37



a data augmentation operation introduced in YOLOv4. It mixes 4 training 
images into one to train the classifier on objects outside their normal context 
[32].

Within YOLOv4 are many derivative models that consist of changes in 
architecture. One such derivative is Yolov4-tiny, released in June 2020 [60]. 
YOLOv4-tiny is a model with a smaller backbone and only 2 detection heads 
instead of the 3 found in YOLOv4. A detection head is where a specific sized 
feature map is used to make bounding box predictions. This reduction in the 
number of layers in Yolov4-tiny means there are less parameters and weights, 
and thus less computation time is needed to make a forward pass through it. 
I used the official ”YOLOv4 pre-release” version that features an SPP/PAN 
neck, the YOLOv3 head architecture, and a CSP-based Darknet backbone. 
A summary of YOLOv4 models are seen in Table 2.

Table 2: Number of layers and detection heads in common YOLOv4 models

Model Number of Layers Number of Heads
YOLOv4 162 3

YOLOv4-tiny 38 2
YOLOv4-tiny-3l 45 3

After preliminary model training, I ended up choosing a modified version 
of YOLOv4-tiny called ‘Yolov4-tiny-3l’, which has 3 YOLO detection heads 
instead of 2. This means the model predicts bounding boxes at three different 
scales instead of 2. It was shown by [29] that the extra YOLO detection head 
led to only a minor reduction in speed when deployed on a Jetson Nano. 
Having the 3rd YOLO head means higher accuracy due to a 3rd feature map 
used in detection.

Input resolutions of 320, 416, and 640 were chosen to compare accu
racy, recall, and inference time. New anchor boxes were generated for each 
resolution, specific to my dataset. New anchor boxes are not generated auto
matically and must be done with Darknet’s “calc_anchors” function. It uses 
k-means clustering to generate new anchors based on input dimensions, the 
number of detectors in the YOLO head, and existing ground truth labels in 
the training dataset.

I also trained a full YOLOv4 model called ‘Yolov4’. I wanted to compare 
the standard model to the tiny models. I knew inference performance would 
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suffer in the standard model, so I only trained this model at the 320 input 
resolution.

Each model training took varying amounts of time depending on the in
put resolution. The models were trained for 6000 iterations using the recom
mended formula from the Darknet documentation. All trainings were verified 
they converged, meaning they reached a minima in the loss function. After 
model training, precision, recall, and model size were recorded.

3.2.3 YOLOv5 Pytorch

YOLOv5 training was performed in PyTorch version 1.7.1, along with torchvi
sion 0.8.2. I used the official YOLOv5 “v4.0” repository, which is the latest. 
YOLOv5 implementation in PyTorch made training easy to set up and per
form over Darknet.

YOLOv5 has four different models of varying sizes. I used the ‘Yolov5s’ 
model, which is the smallest one they offer. Like ‘Yolov4-tiny-3l’, this small 
model also features 3 YOLO heads and has a reduced layer backbone over 
the larger models. To have a fair comparison to YOLOv4, I also trained 
models on 320, 416, and 640 input resolutions for 100 epochs each.

YOLOv5 offers a superior way to measure metrics and track hyperpa
rameters compared to the other training platforms tested. It is integrated 
with the web application Weights and Biases [61]. Each training run has all 
related training measures consolidated, making comparisons easy, as seen in 
Figure 14. By comparing differences in runs visually, overall time in find
ing an optimal configuration is highly reduced. Like the YOLOv4 process, I 
recorded the precision, recall, and model size of each trained ’Yolov5s’ model.

Figure 14: An example of a training run measures in Weights and Biases.
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3.2.4 TLT 3.0

Transfer Learning Toolkit (TLT) is NVIDIAs Transfer Learning framework 
for training a variety of object detection models. I used the latest version, 
3.0. The main benefit of using version 3.0 is the support of YOLOv4. One 
benefit of training YOLOv4 in version 3.0 is that there is no need to resize the 
training images up front. It is also beneficial because its support of Jupyter 
notebook examples that make it easier to train a model compared to only 
using its Command Line Interface (CLI).

TLT uses a TensorFlow with Keras backend for training. It only allows 
Transfer Learning by using NVIDIA’s pretrained models in a Hierarchical 
Data Format 5 (.hdf5) extension. TLT has extensive documentation and 
makes training more streamlined and easier to use. During training, each 
epoch is saved in a weights file which allowed choosing the weights that gave 
the best performance metrics.

Unlike Darknet-based YOLOv4 and PyTorch-based YOLOv5, TLT only 
provides one base model for YOLOv4, but with the ability to use a variety 
of backbones such as Darknet, Resnet, VGG, MobileNet, and SqueezeNet. 
To provide a fair comparison, I used the Darknet backbone. To make it 
a “tiny” model and be comparable to the CSP-based backbones of ‘Yolov4- 
tiny-3l’ and ‘Yolov5s’, I specifically selected the ‘CSPDarknet19’ backbone for 
feature extraction. In addition, the YOLOv4 version on TLT uses 3 detection 
heads, making it a fair comparison to ‘Yolov4-tiny-3l’ and ‘Yolov5s’. Finally, 
I trained these models using 320, 416, and 640 input resolutions for 100 
epochs.

In addition to the YOLO models, I trained SSD-based models using Mo- 
bileNet as the backbone, called ‘SSDMobileNetV2’. TLT did not support 
using the CSPDarknet19 backbone with the SSD detector. MobileNet is a 
practical choice in edge inference as it employs depthwise-separable and group 
convolutions which increase performance. MobileNet’s reduced architecture, 
paired with the SSD detector, makes it a suitable option when choosing a 
lightweight CNN. The SSD models were trained with an input resolution of 
320, 416, and 640 for 100 epochs each.

Finally, I trained two Faster-RCNN models with TLT, called ‘FRCN- 
NDarknet19’. Faster-RCNN is a supported model in TLT that has state-of- 
the-art accuracy in Object Detection. I paired it with the CSPDarknet19 
backbone for a more fair comparison with the YOLO models. I trained the 
models using 320 and 416 input resolutions for 100 epochs each. I left out 
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640 resolution after it became apparent how poor detection speed was in the 
416 resolution model.

One benefit of TLT is that it offers a pruning function that trims away 
weights not providing any benefit to feature extraction. This removal of 
weights results can provide even faster inference times for ‘Yolov4CSPDark- 
net19’, ‘SSDMobileNetV2’, and ‘FRCNNDarknet19’. I did not pursue prun
ing of these models as it would be unfair if not done to all the other models 
being evaluated.

3.3 Inference

Detection speed was tested on 4 different inferencing platforms. These were 
Darknet, PyTorch, tkDNN, and Deepstream. For the ‘Yolov4-tiny-3l’ and 
‘Yolov4’ models, they were tested in Darknet, tkDNN, and Deepstream. 
‘Yolov5s’ was tested within PyTorch and Deepstream. Finally, the TLT 
models, ‘Yolov4cspdarknet19’, ‘SSDMobileNetV2’, and ‘FRCNNDarknet19’ 
were all tested only in Deepstream. While a more fair comparison would 
allow all models to be tested across all inferencing platforms, major incom
patibilities in file formats, training platforms, and software versions did not 
allow it.

Inference with Darknet was straightforward. Darknet inference function
ality directly supports Darknet weights and its parameter file. It is run with 
its “map” function call. I used a 640x640 video taken with the robot proto
type of bermudagrass and dandelions to measure FPS for each of the models. 
One important note about using Darknet on the Jetson Nano is that it does 
not support its “CUDNN_HALF” flag being enabled when building it, thus 
not performing inference at FP16 precision. As mentioned earlier, the Jetson 
Nano has a Maxwell GPU, which lacks Tensor Cores, which are needed to 
run FP16 precision. Therefore, all inference run in Darknet on the Jetson 
Nano was run at FP32 precision.

Inference with PyTorch was similarly a direct approach. It used the 
native weight and parameter files to calculate FPS on the same video used 
with Darknet.

Deepstream is NVIDIA’s production-ready inference platform which re
quired much more nuance to set up. At this time, the latest version of 
Deepstream, version 5.1, was used. Depending on the model architecture, 
different bounding box parsing libraries had to be used. Another difference 
is that, unlike Darknet and PyTorch, which used weight files directly, Deep
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stream required its model to be converted to a TensorRT engine. This can be 
done within TLT or natively by Deepstream. Deepstream natively supported 
weights trained in Darknet, but weights from YOLOv5 in PyTorch first had 
to be converted to ONNX format. After, TensorRTs function “trtexec” had 
to be used to convert the ONNX based model into a TensorRT engine. The 
same video file was used to measure FPS that was used in Darknet and 
PyTorch.

The final inferencing platform used was a library called tkDNN. While 
Darknet does not allow FP16 precision on the GPU, tkDNN solves this prob
lem with a workaround specifically for Jetson-based products. Set up is the 
most complicated on this platform, requiring Darknet weights to be exported 
and converted to a compatible format. Next, tkDNN must be built with spe
cific configuration parameters set.
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4 Results and Analysis

In the previous chapter, I presented the implementation of the data gathering, 
processing, training, and evaluation process. This section, I present and 
analyze the results from training and inference evaluation. I first go over 
inference speed results and then analyze accuracy vs. speed.

To reiterate, the data used in this thesis were novel images taken in the 
field of dandelions in bermudagrass at a local sportsfield park. The data was 
consistent in that all images were captured at the same 640 x 640 resolution, 
same ground sampling distance, with the same Raspberry Pi High Quality 
Camera, and under the same lighting conditions. I also made sure to get 
an almost even distribution of dandelion sizes, as seen from Figure 8, with 
smaller sizes lacking. An example of some images from the dataset with 
dandelion and background can be seen in Figure 15. The top row shows clear 
examples of dandelions while the bottom row shows what a background looks 
like.

Figure 15: Top row featuring dandelions and bottom row featuring back
ground images.

After training each CNN on the custom dataset, their precision and recall 
were measured. The precision metric, mAP, was recorded where it was high
est throughout many epoch checkpoints. The models were then transferred 
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to the Jetson Nano, where they were optimized to run inference. Inference 
speed was then measured in FPS. These results can be seen in Table 3. As 
mentioned in Chapter 3, three different training platforms were used and 
four different inferencing libraries. Finally, model size was recorded as well.

Model Resolution Training Platform (x86) Inference Platform (aarm64) Model Size (MB) mAP@.5 Recall FPS

Yolov4 320 Darknet Darknet 210.2 0.97 0.94 2.7

Yolov4 320 Darknet tkDNN 118.8 0.97 0.94 6.9

Yolov4 320 Darknet Deepstream 119 0.97 0.94 8.9

Yolov4-tiny-3l 320 Darknet Darknet 24.5 0.86 0.84 15.6

Yolov4-tiny-3l 320 Darknet tkDNN 14.6 0.86 0.84 39.8

Yolov4-tiny-3l 320 Darknet Deepstream 14.6 0.86 0.84 49.6

Yolov4-tiny-3l 416 Darknet Darknet 24.5 0.87 0.85 10.9

Yolov4-tiny-3l 416 Darknet tkDNN 33.7 0.87 0.85 26.1

Yolov4-tiny-3l 416 Darknet Deepstream 33.7 0.87 0.85 33.1

Yolov4-tiny-3l 640 Darknet Darknet 24.5 0.77 0.65 5.3

Yolov4-tiny-3l 640 Darknet tkDNN 34.3 0.77 0.65 12.2

Yolov4-tiny-3l 640 Darknet Deepstream 34.3 0.77 0.65 16.1

Yolov4CSPDarknet19 320 TLT3.0 Deepstream 101.9 0.88 n/a 38.9

Yolov4CSPDarknet19 416 TLT3.0 Deepstream 190.7 0.907 n/a 27.8

Yolov4CSPDarknet19 640 TLT3.0 Deepstream 193 0.88 n/a 12.5

Yolov5s 320 Pytorch Deepstream 16 0.97 0.91 41.2

Yolov5s 320 Pytorch Pytorch 14.3 0.97 0.91 10.8

Yolov5s 416 Pytorch Deepstream 23.6 0.97 0.94 26.3

Yolov5s 416 Pytorch Pytorch 14.4 0.97 0.94 9.6

Yolov5s 640 Pytorch Deepstream 20 0.96 0.94 12.5

Yolov5s 640 Pytorch Pytorch 14.4 0.96 0.94 5.6

SSDMobileNetV2 320 TLT3.0 Deepstream 5.2 0.91 n/a 41.8

SSDMobileNetV2 416 TLT3.0 Deepstream 6.6 0.90 n/a 27.5

SSDMobileNetV2 640 TLT3.0 Deepstream 9.6 0.76 n/a 12.6

FRCNNDarknet19 320 TLT3.0 Deepstream 49.2 0.85 0.91 0.7

FRCNNDarknet19 416 TLT3.0 Deepstream 70.4 0.97 0.92 0.7

Table 3: CNN Metrics - Precision, Recall, and FPS

Table 3 shows six different CNN models at varying resolutions. Two of 
them were trained in Darknet: ‘Yolov4’ and ‘Yolov4-tiny-3l’. ‘Yolov4’ is the 
standard YOLOv4 model and ‘Yolov4-tiny-3l’ is the standard Yolov4-tiny 
model but with an extra YOLO head. Of these two different models, they 
were inferenced on three different platforms: Darknet, tkDNN, and Deep
stream. It is of note that Darknet has three different connotations. Darknet 
is a training platform, an inferencing platform, and a backbone CNN used 
in Image Classification and Object Detection. The model ‘Yolov4’ was only 
trained at 320 resolution as preliminary studies showed higher resolutions 
were not feasible in attaining real-time performance. This was proven as 
any of these three models achieved no more than 9 FPS. ‘Yolov4-tiny-3l’ was 
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trained at three different resolutions: 320, 416, and 640. These resolutions 
were picked based on prevalence of similar resolutions in the literature using 
object detectors. ‘Yolov4-tiny-3l’ showed promising results on tkDNN and 
Deepstream at 320 and 416 resolutions, either getting close to or exceeding 
real-time inference performing of 30 FPS. Inference on Darknet showed the 
most inferior performance but this is due to a lack of FP16 precision, as 
mentioned in the previous chapter.

The third model in the table, ‘Yolov4CSPDarknet19’, is a YOLOv4-tiny 
derivation from NVIDIA that also features 3 YOLO heads like ‘Yolov4-tiny- 
3l’. Due to compatibility limitations, it was only trained in TLT and infer- 
enced in Deepstream. Similar to ‘Yolov4-tiny-3l’, it showed pleasing results 
at 320 and 416 resolutions, achieving 38.9 and 27.8 FPS, respectively.

The fourth model is ‘Yolov5s’, the smallest model offering from YOLOv5. 
It was only trained in PyTorch and inferenced in two platforms: PyTorch and 
Deepstream. Analysis of FPS shows the most promising speed comes from 
320 and 416 resolutions using Deepstream. Inference in PyTorch exhibited 
surprisingly slow speed, even at 320 resolution, only managing 10.8 FPS.

The fifth and sixth models, ‘SSDMobileNetV2’ and ‘FRCNNDarknet19’, 
were also trained only in TLT and inferenced in Deepstream due to com
patibility limitations with other platforms. Similar to the other YOLOv4- 
tiny variants, ‘SSDMobiletNetV2’ showed compelling FPS results at 320 and 
416 resolutions in Deepstream, managing 41.8 and 27.5 FPS, respectively. 
‘FRCNNDarknet19’ managed dismal speed results, with both 320 and 416 
resolutions achieving 0.7 FPS. I decided not to train a 640 FRCNN model 
as previous research showed it would be slow, but it was illuminating how 
poor speed was. FRCNN is not a viable object detector for an edge device 
like the Jetson Nano.

Next, I map out precision vs. inference speed of the CNNs to determine 
which is most optimal, in Figure 16. It is a common phenomena in Object 
Detection studies where accuracy and speed exhibit Pareto efficiency [15], 
[17], [32]. This means model accuracy cannot be improved without making 
speed worse off, and vice versa. Mapping out metrics in this way will show 
which CNN is most feasible for real-time inference while also exhibiting rea
sonable accuracy. It will also demonstrate if these trained models will exhibit 
Pareto efficiency.
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Figure 16: Comparison of accuracy (mAP) vs speed (FPS) of trained CNNs. 
Each series represents a different model inferenced on a specific library, across 
varying resolutions.

With mAP on the y-axis and FPS on the x-axis, the ideal model with 
the highest accuracy and fastest inference would exist in the top right of the 
graph. First, six of the models achieved real-time inference speeds, surpass
ing the 30 FPS threshold. Two models have the most promising results when 
accounting for accuracy: ‘Yolov5s’ and ‘Yolov4-tiny-3l’, both at 320 resolu
tion and inferenced on Deepstream. The trade-off between the two means the 
‘Yolov5s’ model has higher accuracy, while choosing ‘Yolov4-tiny-3l’ means 
faster speed. It is important to point out that the y-axis (mAP) scale has a 
minimum bound of 0.75 and maximum bound of 1, while the x-axis (FPS) 
has a minimum bound of 0 and a maximum bound of 50. This means the 
magnitude of change visualized in mAP is not the same as FPS. Both have 
high accuracy, 0.86 mAP for ‘Yolov4-tiny-3l’ and 0.97 mAP for ‘Yolov5s’. 
‘Yolov4-tiny-3l’ has a 20.4% increase in speed and a 12.8% reduction in ac
curacy compared to ‘Yolov5s’.

The best inference platform was Deepstream compared to Darknet, Py- 
Torch, and tkDNN. For each model that was inferenced on tkDNN, there 
existed a faster occurrence at the same resolution, on Deepstream. This 
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demonstrates tkDNN was inferior to Deepstream. Their library claims to 
be written specifically to speed up Deep Learning inference on Jetson prod
ucts, yet it fails to achieve what NVIDIA’s Deepstream implementation does. 
This does not mean it exhibited poor performance as it still achieved real
time inference with the ‘Yolov4-tiny-3l’ model at 320 resolution. PyTorch 
and Darknet both failed to achieve real-time performance.

An interesting observation from Figure 16 is that peak accuracy for most 
models happened at 416 resolution and dipped for 320 and 640 resolutions. 
This is in contrast to the phenomena of increasing accuracy with increasing 
resolution in other Object Detection studies. There are a couple reasons I 
attributed to the trends seen in Figure 16. First, the dataset trained on is 
much simpler compared to the ones used in [15], [17], [32]. They trained on 
MS COCO, which has 80 classes and complex objects, whereas the dataset 
I curated has one class with a simple object shape and orientation. Second, 
I believe the lack of small objects in my dataset are causing a decrease in 
mAP at 640 resolution. You usually want to increase the resolution to help 
detect smaller objects but most of my ground truth labels skewed towards 
medium to large size objects, relative to frame size. Finally, I attribute the 
peak in accuracy at 416 resolution to the anchor box choices. Anchor boxes 
have to be selected based on data distribution and input image size, and I 
attribute the lack of wise anchor box choices to decreases in mAP.

Overall, the feasibility of real-time dandelion detection with a CNN is 
best realized using ‘Yolov5s’ or ‘Yolov4-tiny-3l’ while using Deepstream for 
inference. Figure 17 shows example detection results of the ’Yolov5s’ model 
with 320 input resolution. It is a combination of sixteen images, with eight 
containing dandelion and eight containing background images. In the back
ground images, no false positives were observed. In the images with dande
lion, they were all localized correctly.
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Figure 17: Predictions made by ‘Yolov5s’ at 320 resolution on 8 images 
containing dandelions and 8 background images.
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5 Discussion

Weeds such as dandelions are considered a serious issue in turfgrass man
agement. They compete for nutrients, water, sunlight, and cause undesir
able aesthetics. Traditional methods of weed management in turfgrass have 
many issues, such as increased costs and potential environmental and health 
hazards. Deep Learning and other smart solutions are abundant in Agri
culture production and research but lacks in the Groundskeeping industry 
such as athletic fields, golf courses, commercial and residential lawns, and 
institutional landscapes. The aim of this thesis was to test the feasibility 
of real-time weed detection in turfgrass using an edge device. This would 
provide the Computer Vision module to an affordable autonomous robot 
utilizing precision sprayers.

The first published study on weed detection in turfgrass systems using 
Deep Learning was by [2]. They showed the feasibility of using CNNs to 
identify broadleaf weeds in actively growing bermudagrass with Image Clas
sification and weedy Bluegrass in dormant bermudagrass using Object De
tection. The same authors followed up that study by demonstrating the 
feasibility of detecting weedy grasses in actively growing bermudagrass using 
Object Detection [57]. In addition, Object Detection of broadleaf weeds was 
performed in [56], including dandelion, in perennial ryegrass. Ryegrass has a 
different texture and growth habit than bermudagrass. My thesis work sits 
within these studies as none had shown the feasibility of dandelion detection 
in actively growing bermudagrass using Object Detection. Further, my thesis 
extends all their work by testing the feasibility of using an object detector in 
the field on an edge device, in the hopes of achieving real-time performance.

Work in this thesis involved gathering images in the field. This data was 
cleaned, labeled, and then augmented for training. Overall, 15 CNN object 
detectors were trained and evaluated for accuracy. Finally, they were all 
moved to an edge device, optimized, and performed inference.

This thesis’s key finding is that it is feasible to achieve real-time de
tection of dandelions in bermudagrass using an edge device such as the 
Jetson Nano. I used a fair evaluation method of CNNs by keeping most 
parameters and variables constant across comparisons. Four object detec
tors were able to achieve real-time performance: ‘Yolov4-tiny-3l’, ‘Yolov5s’, 
‘Yolov4CSPDarknet19’, and ‘SSDMobileNetV2’. Of these, only ‘Yolov4-tiny- 
3l’ achieved this with 416 resolution, while the rest were at 320. The max 
FPS achieved with 640 resolution was 16.1 FPS by ’Yolov4-tiny-3l’.
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I attribute attaining real-time detection from these CNNs to a couple 
of factors. First, they all have lightweight architecture. Selecting a CNN 
with reduced layers and kernels is essential when inference speed is most 
important. Second, quantization is equally important by reducing their pre
cision from FP32 to FP16. Third, choosing an edge device with a GPU 
made achieving real-time inference possible. This is because the training 
and inference platforms used are optimized in CUDA, and selecting an edge 
device without a CUDA-enabled GPU means missing out on extra perfor
mance. Lastly, the choice of inference platform showed differences in speed. 
NVIDIA’s Deepstream demonstrated the highest inference speed. This makes 
sense as NVIDIA also makes the Jetson, CUDA, and TensorRT.

Of the 4 CNNs attaining real-time inference, it was clear from Figure 16 
that ‘Yolov5s’ at 320 input resolution stood out as the optimal choice. It 
achieved 97% precision, 91% recall and 41.2 FPS using Deepstream. I believe 
it would be very suitable serving as an object detector on an autonomous 
weeding robot. Its high precision means it will have a high success rate of 
detection when it makes a prediction and its high recall means it will have 
a high detection rate of target weeds. As mentioned in Chapter 3, recall is 
not as important as precision in dandelion detection and spraying. Therefore, 
even though ‘Yolov4-tiny-3l’ has lower recall, it would also be a suitable CNN 
to implement in a weeding robot as well.

What cannot be determined by this thesis is how lightweight and quan
tized CNNs can perform on edge devices that are not CUDA-capable. The 
TensorRT library and Deepstream inference platform are what made the 
most contribution to speeding up inference in the models evaluated in this 
thesis. One should not infer how these models would perform on edge devices 
like the Raspberry Pi or Google Coral, both which lack CUDA cores.

5.1 Limitations

Bermudagrass is either actively growing or dormant. In Southern California, 
it can be actively growing year-round, while in other years and locations it can 
enter a dormant state if temperatures dip below freezing. One shortcoming 
of this thesis is that no training images contained dormant bermudagrass. I 
hypothesize the trained models would be more robust against color changes 
in bermudagrass if dormant bermudagrass images were used in training.

Another issue faced was that my dataset seemed to lack complexity. It 
could have used more images of grass that had been scalped by a mower, of 
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sprinkler heads and irrigation boxes, high traffic areas where grass is com
pacted, and when grass has morning dew on it. All these would have im
proved the complexity and robustness of the dataset and could have helped 
with accuracy issues when training at different input resolutions.

Another limitation of this thesis was the capture method of data. While 
I used the same type of camera that would be used in production, the frames 
were captured while the robot was stationary. In production, the robot would 
be moving. The lack of motors on the robot prototype meant I could not 
capture video or frames in motion.

5.2 Future Work

The inference time measured in this thesis is end-to-end, which includes 
pre-processing, passing through the network, and NMS with bounding box 
prediction. If this work is to be implemented into a robot, additional pro
cessing time will be required to translate bounding box detection into an 
algorithm that handles weed removal, such as precision spraying or mechan
ical removal. How fast this algorithm is will determine the final Computer 
Vision pipeline of the robot. Therefore, it is advised to pick and train a model 
that is achieving more than 30FPS to account for this extra post-processing 
speed.

One shortcoming of the Jetson Nano is that it does not support INT8 
operations. Testing inference on a device that supports it like the Google 
Coral or Jetson NX could provide higher FPS. Further, exploring other edge 
devices is important as newer technologies are developed that help improve 
throughput.

Two other routes that can be explored to help speed up throughput of 
the detection system. First, model pruning can be performed, which elimi
nates some weights and thus shrinking model size. Second, throughput can 
potentially be improved by using OpenMP parallelization on the CPU of an 
edge device to decrease latency in pre-processing and the spraying algorithm 
which takes the bounding box coordinates from inference.

Finally, this thesis provides the Computer Vision framework for creating 
an autonomous weeding robot. It shows real-time dandelion detection using 
an affordable Jetson Nano is possible. Next steps would be to build the robot 
and implement an algorithm that uses the object detectors trained with this 
thesis to spray dandelions using precision microsprayers.
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5.3 Conclusions

Computer Vision plays an important role in the perception suite in precision 
weed management. To avoid misclassifications and misses all together, the 
model used must be robust and accurate. Robustness and high accuracy can 
be achieved through the use of Deep Learning. However, Deep Learning is 
very computationally intensive and can be slow on edge devices. Fortunately, 
it benefits from the parallel processing and matrix computation of a GPU. 
This improvement, along with quantization, lightweight CNN architecture, 
and platform optimization, means tasks such as Object Detection is possi
ble on resource-constrained edge devices, thus taking Deep Learning to the 
edge. These edge devices can then be used outside the lab on robotic plat
forms. In the Groundskeeping industry, utilizing an autonomous weeding 
robot can save on resource costs, divert manpower to more complex projects, 
and eliminate human error in the weeding process. This AI-powered software 
and hardware for this new intelligent weeding approach in turfgrass is now 
realized with this thesis.
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