Quantifying Intertidal Zone Species Using Semantic Segmentation
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Abstract—As anthropogenic impacts on marine ecosystems
accelerates (e.g. warming, acidification, eutrophication, etc),
it is essential to build robust datasets that establish biological
baseline data and capture long-term trends in shifting species
abundance and diversity. This data has traditionally been
collected through continual revisits by skilled ecologists and
taxonomists to long-term ecological monitoring sites. One novel
technique developed by an intertidal ecology research group
at California State University Channel Islands (CSUCI) builds
Im-wide photo-transects for the length of the tidal zone (20m
from splash to low zone) at two sites on Santa Rosa Island.
These photos are stitched together using software and offer
high-resolution swaths of information at the island, taken twice
a year. A machine learning technique, semantic segmentation,
has been employed to automate the analysis of these large
images, focusing first on a dominant algal species of rockweed
Silvetia compressa. This automation will greatly reduce the time
needed and human error involved in scoring and quantifying
these transects. The study involves developing a convolutional
neural network using transfer learning on a publicly available
network.

Index Terms—semantic segmentation, transfer learning, con-
volutional neural network

1. Introduction

Ecological monitoring aims to track and identify causes
of ecosystem shifts by measuring ecosystem state variables
in space and time [1]. Ecological monitoring in rocky in-
tertidal zones, helps to track the species assemblage and
their biodiversity. This helps researchers to better under-
stand the species, changes that occur in their assemblage
over time and the factors that cause those changes, and
to make informed decisions pertaining to the ecological
balance and marine conservation [2]. Monitoring programs
have traditionally focused on discrete measurements such as
point intercept or transects. However, swath methods such
as photo transects can provide more detailed information on
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Figure 1. Changes in assemblage of species over time at Bechers Bay,
Santa Rosa Island Intertidal Zone, CA.

the ecological diversity and abundance of an intertidal site.
One such monitoring of the rocky intertidal zone of Santa
Rosa Island is shown in the Figure 1. This figure shows
the variation in the assemblage of species over a period of
three years. During the winters of 2016 and 2017 the area
was dominated by two species Phragmatopoma californica
and Phyllospadix sp.; however, in winter 2018 Phyllospadix
sp. was largely displaced by Silvetia compressa. Phrag-
matopoma californica was present in greater abundance in
winter 2018 as compared to winter 2017.

Ecological monitoring can be done using point inter-
cepts, vertical transects or photo transects. The point inter-
cept method provides clustered data with good resolution
of the species in specific randomly distributed plots in each
zone (e.g. low, mid, high). The vertical transects method
gives a low resolution view of the site but allows researchers
to collect data evenly throughout the site. The photo tran-
sects method gives the highest amount of resolution of the
site, but the data from this method can extremely difficult
to process.

In the present study, photo transects are used as the
source of information. Small sections of the region are
captured in each image. These images collect an abundant
amount of ecological data for a region, provide a snapshot
in time of the state of the region, and quantify the presence
of each species in the region. Quantifying images, allows
researchers to establish a biological baseline and track any
changes that occur in the species abundance and diversity
over time.

Typically, these images are quantified by skilled tax-
onomists and ecologists, allowing for accurate identification
of the species assemblage in each site. But quantifying



Figure 2. Sample image of algae species - Silvetia compressa.

huge amounts of data manually can be time-consuming
and will likely lead to human error. In recent years, the
machine learning research community has developed many
techniques to address the problems that arise in manual
quantification.

The goal of this work is to perform semantic segmen-
tation on the photo transects containing a specific algae
species, Silvetia compressa, as in Figure 2 found in two
rocky intertidal zones in Santa Rosa Island - Bechers Bay
and Skunk Point.

A brief description about the motivation of this work
has been provided. The remaining sections are arranged as
follows: Section 2 gives the background knowledge needed
to understand the functionality of the present study. A
thorough study and reference to techniques currently used
and those used in the past are also included. Section 3
introduces the dataset and techniques used to label the
training images. Section 4 describes the model architecture
used in the present study. Section 5 demonstrates the im-
plementation of the solution provided by the present study.
Section 6 presents the results and a description of the metrics
used to evaluate the system. Finally, Section 7 provides the
concluding remarks and possible extensions of this work.

2. Related Work

Semantic segmentation is understanding the image at the
pixel level, i.e., each pixel of the image is labeled with the
object class it belongs to. Here an image is trained along
with the image mask that contains the part of the image
concerned (foreground, and the remaining is background).

Before deep learning, approaches like TextxonForest [3]
and Random Forest [4] based classifiers were used for se-

mantic segmentation. Fully Convolutional Networks (FCN)
for Semantic Segmentation [5], was a Convolutional Neural
Network (CNN) proposed for semantic segmentation. It was
a dense network without a fully connected layer producing
segmented images. Using a CNN for segmentation was
not desirable because the pooling layers in the network
increased the field of view and collected the information
but discarded the location of the information. However,
in semantic segmentation, the source of the information is
necessary, so networks were evolved to tackle this problem
such as the encoder-decoder network, the use of Conditional
Random Fields (CRF), or the use of dilated convolutions.

In an encoder-decoder network, the encoder gradually
reduces the spatial dimension with pooling layers and the
decoder gradually recovers the object details (through the
connections between encoder and decoder) and spatial di-
mension. There are usually short cut connections from en-
coder to decoder to help the decoder recover the object
details better. CRFs are graphical models that smooth seg-
mentation by observing that similar intensity pixels tend to
belong to the same class. CRF post-processing is used after
segmentation.

FCN and SegNet [6] were two initial encoder-decoder
architectures. Since then several networks have been de-
veloped specifically for semantic segmentation. Multi-Scale
Context Aggregation by Dilated Convolutions [7] and
DeepLab [8] were based on dilated convolutions that per-
forms convolution operations with a modified (wider) kernel.
U-Net [9] is an encoder-decoder network that has demon-
strated success working on a small number of bio-medical
images. DeepLab v3 [10] has also demonstrated success in
semantic segmentation by modifying the previous versions
of DeepLab and using DenseCRF post-processing.

Training of all the above-mentioned networks required
huge datasets except U-Net. But in many domains very few
data samples are available for training. The problem with a
small dataset is that it leads to over-fitting and reduces the
accuracy of the network. To overcome this problem data
augmentation, dropout [11] and transfer learning [12] were
evolved.

Transfer learning is used to take the knowledge learned
in one model and apply it to another task. This helps to use
existing networks without worrying about the large dataset
and computational power required to train the network.
There are three major transfer learning scenarios:

e CNN as a fixed feature extractor: In this method
a CNN pre-trained on an existing dataset is used.
The last fully-connected layer is removed, and the
remaining network is treated as a fixed feature ex-
tractor for the new dataset.

o Fine-tuning the CNN: This method, not only in-
volves replacing and retraining the top layers of
the CNN, but also fine-tuning the weights of the
pre-trained network. All layers can be fine-tuned or
a higher level portion of the network is fine-tuned
while keeping the earlier layers fixed.

e Pre-trained models: Since it takes time to train a



CNN, some people release the model weights of
their CNN trained on the state-of-the-art datasets
which can be used by others on their datasets.

CNN features are more generic in the early layers and
more original dataset specific in the later/higher layers. The
selection of the transfer learning depends on various factors,
but the size of the dataset and its similarity to the original
dataset are the most important ones.

o If the new dataset is small and similar to the orig-
inal dataset then using CNN as feature extractor is
beneficial to avoid over-fitting.

o If the new dataset is large and similar to the original
dataset then fine-tuning is used.

o If the new dataset is small and different from the
original dataset then it is better to train the SVM
classifier using activations from earlier layers.

o If the new dataset is large and different from the
original dataset then fine-tuning partially-completely
is appropriate.

Several networks have been successfully created using trans-
fer learning [13], [14] and [15].

3. Dataset

This section provides details about the datasets used in
the current study. It contains information like where and how
the images were captured and the preprocessing techniques
used on the images for machine learning.

The images of various species were collected from photo
transects at two rocky intertidal zones in Santa Rosa Island -
Bechers Bay and Skunk Point. These images were captured
using an SLR camera. Each image is an RGB image with a
resolution of approximately 3400 x 3400. The phototransects
comprise eleven total swaths per site per season, each 20 m
long and spaced 3 m away from one another. A rig of 1 m X
1 m was used to capture a single image and 58 such images
were captured every 35 cm in order to create 65% overlap.
These images were later restitched to create a 1 m x 20 m
image of the entire photo transect. All images were captured
during low tide, and preferably in daylight hours. However,
the low tides in these zones can occur during the night. Due
to this, some images were captured using flash photography
and with this variability in the lighting conditions different
colors of the same species were observed.

The images contain nine different species namely
Mytilus californianus, Silvetia compressa, Phragmatopoma
californica, Phyllospadix sp., Endocladia murcata, Ulva sp.,
Anthropleura sola and Red Algae. The present research
study focuses on Silvetia compressa. A total of 592 images
having dominant species as Silvetia compressa were taken.
These images contain Silvetia compressa along with other
species.

A total of 150 images were annotated out of which 100
were used as training and validation datasets and remaining
were used as ground truth images to analyze the predicted
mask of the test images. Annotated images (images con-
taining only the foreground object i.e. Silvetia compressa)

(a) The original image contain-
ing Sivetia Compressa. age.

(b) The resulting annotated im-

Figure 3. An example of the image labeling process.The annotated image
created using Image Segmenter App. The white pixels indicate foreground
region and the black pixels indicate the background region.

were created. Out of the training images only 85 images
and their labels (annotated images) were used for training
and 15 images and their labels were used for validation. The
entire dataset was randomly split into training and validation
datasets while training the model. Figure 3 shows an exam-
ple of a labeled image. The left image is the original image
and the right image contains the segmented image which
is a binary image with white pixels indicating foreground
(Silvetia compressa) region and black pixels indicating the
background region. For creating image labels, the Image
Segmenter App in Matlab Image Processing Toolbox was
used.

The Image Segmenter App provides many different ways
to annotate an image. The Graph-cut method was used in the
present study. Graph-cut is a semi-automatic segmentation
technique used to annotate images into foreground and
background elements. To mark foreground and background
elements, lines called scribbles are drawn. Based on the
scribbles, the image software completes the segmentation.

The segmented image might have some imperfections,
so morphological tools like dilation and erosion were used
to fix the imperfections and to create a well-defined border.
The segmented binary image was then stored and used as a
label while training the model.

4. Model Architecture

The present study uses the existing U-Net model archi-
tecture and performs fine-tuning. U-Net was developed to
perform semantic segmentation on microscopy images. As
mentioned earlier, U-Net is an encoder-decoder architecture
with skip connections. It consists of an encoder (contracting)
path and a decoder (expansive) path.

The left part follows a typical CNN architecture with
repeated application of two 3 x 3 convolutional layers, each
having an ReLU activation function, and followed by a 3 x 3
pooling layer with the max pooling operation having a stride
of 2. Downsampling operations are performed in this part.
Downsampling is a max pooling layer which is an operation
that summarizes each neighborhood of 2 x 2 neurons with
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Figure 4. A fine-tuned U-Net architecture for performing semantic segmen-
tation.

its maximum value thereby reducing the dimension of the
data by a factor of 4.

Each step in the expansive part has two 3 x 3 con-
volutional layers followed by upsampling operations that
double the output layer’s image dimension by repeating each
neuron’s value twice. The skip connections that are used
are operations that merge the output of last convolutional
layer of each step at the downsampling part with the output
of convolutional layer with the same resolutions at the
upsampling part.

The U-Net architecture was fine-tuned, as shown in
Figure 4, for the present study as mentioned below:

e An RGB input image of size 512 x 512 was used.

o No data augmentation was performed.

o Dropout layers were added to avoid over-fitting
caused in small training datasets.

o Instead of a SGD optimizer an Adam optimizer was
used.

5. Implementation

This section contains details about performing training
on the model discussed in the previous section. The training
was performed on a machine with an Operating System (OS)
- Ubuntu 16.04 and a Graphical Processing Unit (GPU) -
Nvidia GTX 1080Ti installed. Python code running on the
Keras framework with a Tensorflow backend was used.

Keras: Keras is a high-level neural networks Application
Programming Interface (API), written in Python enabling
fast experimentation of various machine learning techniques,
and runs on top of either TensorFlow, Theano or Microsoft
Cognitive Toolkit (CNTK), which are software libraries for
machine learning. Keras provides:

« Easy and fast prototyping through a user friendly
interface, modularity and extensibility.

« Support for convolutional neural networks, recurrent
networks and their combination.

o CPU and GPU compatibility.

Different approaches were tried to tune the learning rate
hyperparameter. The first try was using the original U-Net
model without dropout. The original U-Net model used SGD
optimizer. The training evaluation results using this dataset
can be seen in Figure 5. From the figure, it is seen that
the training accuracy and the validation accuracy was low
for semantic segmentation. Also, the training and validation
loss was high.

Next, dropout layers were added added and evaluated.
The training evaluation results can be seen in Figure 6. From
the figure, it is seen that there was no change in the training
accuracy and the validation accuracy. Also, the training and
validation losses are high. Then the modifications mentioned
earlier i.e. addition of two dropout layers and using an Adam
optimizer were performed.

For the training of U-Net for segmentation the final
tuning included an Adam optimizer with learning rate of
le — 4. The learning rate was decided based on the training
loss. The higher learning rates were causing the model to
converge faster, and the model was also over-fitting. The
training loss was decreasing, and accuracy was increasing
whereas there was very slow change in validation loss and
accuracy. The smaller learning rates caused the model to
converge very slowly and the difference in the optimal
training loss with the selected learning rate and the one with
small learning rate was small.

Training was carried on until the stopping criteria was
met. Initially the number of epochs was used as a stopping
criteria but the model was not trained optimally i.e., training
continued even after the accuracy started decreasing or loss
started increasing. So, to avoid this situation the EarlyStop-
ping class in Keras was used. With EarlyStopping, validation
loss is monitored and if there is no change or increase in
the validation loss for specified number of epochs then the
training stops. Model checkpoint was added to save best
weights. The model and weights were saved and used for
testing the segmentation model. It took between 30 and 40
minutes to train the model for segmentation.

When training the model with training and validation
datasets it is important to analyze the accuracy and loss of
training versus validation datasets. Binary cross entropy was
used as the loss function and the accuracy metric were used
to evaluate the model during the training process. Figure 7
shows the accuracy and loss graph of the selected model
for semantic segmentation. For a well trained model, not
only should the accuracy be as high as possible and the loss
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Figure 5. Results of training evaluation of U-Net model using SGD
optimizer and without dropout layer.The top graph shows the accuracy
vs epoch for training and validation datasets and the bottom graph shows
the loss vs epoch for training and validation datasets.

be as low as possible, but also the difference between the
training and validation accuracy and loss should be as small
as possible. Figure 7 shows that the difference was low and
the performance of this model was good.

6. Results

This section consists of the results obtained after testing
the model on test datasets and the details about how the
model was evaluated. A confusion matrix describes the
performance of a classification model on the test datasets.
It consists of four different combinations of predicted and
actual values. Table 1 shows the four different combinations.

o True Positive (TP): When the predicted value is
positive and the actual value is also positive.

o False Positive (FP): When the predicted value is
positive but the actual value is negative.

o True Negative (TN): When both, the predicted value
and the actual value are negative.
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Figure 6. Results of training evaluation of U-Net model using SGD
optimizer and with dropout layer. The top graph shows the accuracy vs
epoch for training and validation datasets and the bottom graph shows the
loss vs epoch for training and validation datasets.

o False Negative (FN): When the predicted value is
negative but the actual value is positive.

Actual Value

Positive | Negative
3 Positive TP FP
Predicted Value Negative EN N

TABLE 1. CONFUSION MATRIX USED FOR EVALUATION.

This table helps to find accuracy, recall, precision, F-
score, etc. In the present study, the Sorensen-Dice coeffi-
cient and accuracy were the metrics used to evaluate the
model on test datasets. The Sorensen-Dice coefficient is a
statistical metric used for comparing the similarity between
two images. The Sorensen-Dice coefficient is given by:

2T P
Sorensen-Dice coefficient = (D)

2TP+ FP+ FN
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Figure 7. The accuracy and loss graph of the selected model. The top graph
shows the accuracy vs epoch for training and validation datasets and the
bottom graph shows the loss vs epoch for training and validation datasets.

and accuracy is given by:

Accuracy = TP+TN 2)
YT TPYFP+TN+FN

A test dataset of 50 images was used. These images
were annotated manually, and the annotated images served
as ground truth images for evaluation. The testing was
performed using the model with training accuracy of 97.56%
and validation accuracy of 95.24% and training loss of 0.098
and validation loss of 0.152.

Initially the test images were not pre-processed so the
images that were bright or taken using flash were not
segmented well. Figures 8 and 9 show the results of the
model on unprocessed test images. Figure 8 shows that for
the image taken under normal lights the model segments
properly. Figure 9 shows that for the images that are bright,
the model does not segment properly. So, two pre-processing
techniques - histogram equalization and contrast limited
adaptive histogram equalization (CLAHE) were tried.

(b) Labeled Image

(a) Original Image (c) Predicted Mask

Figure 8. Result of unprocessed test image under normal lighting condi-
tions.

(a) Original Image (b) Labeled Image

(c) Predicted Mask

Figure 9. Result of unprocessed test image under flash lighting conditions.

After trying histogram equalization, the results were
good. The model was able to segment all the test images
properly. Figure 10 shows the results of the model on test
images after histogram equalization.

Adaptive histogram equalization (CLAHE) did a good
job segmenting most of the test images however the results
with histogram equalization were better. Figure 11 shows
the results of the model on test images after CLAHE. On
comparing the right image of Figure 10 and Figure 11 it
is seen that the result after histogram equalization is more
similar to the ground truth image(annotated image). There
were some pixels that were incorrectly segmented as Silvetia
compressa. But the overall results of the segmented images
were good. So, histogram equalization was performed on all
the test images before testing.

The segmented results of these pre-processed images
were then evaluated by calculating the confusion matrix
for each image. Using the confusion matrix, Sorensen-Dice
coefficient was calculated for each image. Table 2 shows
the confusion matrix created using the average count true

(c) Predicted Mask

(a) Post Histogram
Equalization Image

(b) Labeled Image

Figure 10. Result of test images after histogram equalization.
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Figure 11. Result of test images after adaptive histogram equalization.

positive, true negative, false positive and false negative pixel
values of 50 test images. The resulting average value of

Actual Value
Positive | Negative

. Positive 124229 8828
Predicted Value oo e 5554 | 123533

TABLE 2. CONFUSION MATRIX FOR THE SEGMENTATION MODEL.

Sorensen-Dice coefficients for the 50 test images is 0.9453.
This value indicates that on an average the predicted mask
and the annotated image are 94.53% similar. The accuracy
for each image was also calculated, using the values from
confusion matrix in Table 2. The average accuracy is 94.51%
which is close to the validation accuracy.

7. Conclusions and Future Work

The major motivation of this work was to apply semantic
segmentation to identify a specific algae species - Silvetia
compressa. It was found that fine-tuning an existing model
achieved a good accuracy for this application. The main goal
was to reduce the time required to analyze the images for
ecological monitoring and to make it less prone to human
error. This was achieved by creating an automated tool to
find the assemblage of Silvetia compressa by implementing
semantic segmentation.

The semantic segmentation model was able to provide
good results, but there were a few images where a few pixels
misclassified. Improvements in training and preprocessing
can be done to achieve more accurate results. There are
other species that are present in the two rocky intertidal
zones of Santa Rosa Island. The created models should be
tested on the new species and a multi-class classification
and segmentation model should be implemented to identify
these species.
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