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Abstract— Implementations of central place foraging using
multi-robot systems need efficient mechanisms for searching
for resources and gathering them in a central home-nest
location. We propose an approach that partitions the search
space and assigns agents multiple behavioral roles inspired by
honey bee colonies as a way of organizing the search and
gather operation. Through simulation we demonstrate that
this approach minimizes spatio-temporal congestion that results
from many robots sharing a common space near the home-
nest. We compare our role based algorithm to the Distributed
Deterministic Spiral Search Algorithm (DDSA) in a high fidelity
simulation environment built using ROS and Gazebo.

I. INTRODUCTION

As the cost of robotic components such as sensors, ac-
tuators, memory, computer processors, and communication
modules decrease in price, the complexity of robotic ap-
plications has continued to increase. This shift has caused
researchers to be able to shift from a single robot being
controlled by many operators to many robots being con-
trolled by a single operator. In addition the capacity for
completely autonomous behavior in robotic systems has
greatly increased. The research area of swarm robotics takes
this concept and distributes it among many agents, using
simple autonomous individual behaviors to create robust and
complex group behaviors [1], [2]. In many applications such
as planetary exploration [3], manufacturing [4], and land
mine detection [5], a large swarm of inexpensive robots
can outperform a single expensive robot with the additional
benefits of robustness, flexibility, and scalability [6].

The National Aeronautics and Space Administration
(NASA) is particularly interested in using swarms of rovers
to explore other planets such as Mars in search of ice [3].
If enough ice is gathered into a central processing area it
can be separated into oxygen and hydrogen to be used for
fuel. This mission equates to the problem of central place
foraging (CPF).

In CPF resources are distributed around a resource depos-
itory in the center of the environment that acts as a ”home-
nest”. Agents are assigned to find each of the resources,
gather them, and bring them back to the home-nest. Tradi-
tionally, researchers have employed homogeneous foraging
where each robot searches for resources and independently
transports them to the home-nest [7]–[9]. Multiple agents
having to perform independent tasks within this shared space
leads to many problems with congestion [10]. The traffic that
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occurs near the home-nest as well as collisions between the
incoming and outgoing agents represent some of the largest
bottlenecks within this problem domain. In fact, early work
in multi-agent foraging showed that performance actually
decreased with swarm size due to congestion [11]. In order
to forage efficiently, agents need to share what they have
found with others, let the other agents know what has already
been gathered, and effectively avoid each other. To allow
scaling to large swarms of agents, communication needs to
be minimized, agent behavior needs to be simple, and access
to the home-nest needs to be managed.

Our approach to central place foraging is heavily inspired
by the way bee colonies divide the task of foraging for
nectar into multiple behavioral roles. Similarly our algorithm
utilizes similar roles in order organize search and gather
behavior. Bees do not simply randomly happen upon nectar
and bring it back to the nest. Instead they have developed
a surprisingly complex system of searching and gathering
[12]. Scout bees are first sent out to survey the area around
the hive, and upon completing their route, they are able to
report back on the concentration of nectar found by means
of a ”waggle dance”. The collector bees then are allocated
appropriately to gather nectar in the most concentrated
area [13], [14]. Surveying the environment before beginning
collection allows for much more efficient and informed
gathering routing.

The main contribution of this work is an algorithm which
utilizes multiple roles for organizing search and gather
behavior, dividing the search space between the agents so
as to reduce collisions, and sharing search and gathering
progress amongst the agents. We compare our results to
an implementation of the Distributed Deterministic Spiral
Search Algorithm (DDSA) [9]. We chose the DDSA as
the baseline for comparison due to its simple implemen-
tation, consistent (deterministic) results, and its improved
performance over biologically inspired random algorithms
such as the Central Place Foraging Algorithm (CPFA) [8].
Similar to DDSA, we use a spiral search pattern due to its
complete coverage, scalability, and minimal overlap of sensor
coverage [9], [15], [16]. We deviate from DDSA in that we
do not collect any resources until the search space has been
completely covered and the location of all resources on the
search path are determined. Once the search area is covered,
we assign agents to collect resources closest to them in areas
separate from one another.

By decoupling the foraging task into two distinct cate-
gories of search and collection, we are able to retain the
benefits of a deterministic pattern while using information
gathered in the search phase to address the problem of



congestion near the home-nest while collecting resources.
While we utilize a deterministic spiral search pattern for
our work, it is conceivable that by decoupling the foraging
task other search algorithms could be deployed [17]. The
collection portion of the foraging task can be thought of
as a vehicle routing problem with simultaneous pickup and
delivery where each rover has a carrying capacity of one [18].
If rovers were capable of carrying more resources, potential
improvements could be gained by pairing our approach
with the one provided by Ai and Kachitvichyanukul [18].
An additional subproblem within CPF is having multiple
collection depots, which drastically changes the congestion
problem [19].

The remainder of this paper is organized as follows. The
problem formulation is presented in Section 2, followed
in Section 3 by a discussion of the proposed multimodal
distributed foraging algorithm. Section 4 describes the sim-
ulation tests used to compare the results of the proposed
algorithm with that of the DDSA algorithm. The results of
these tests are discussed in Section 5. Section 6 provides
some final conclusions and directions for future work.

II. PROBLEM STATEMENT

The objective of any central place foraging (CPF) algo-
rithm is to minimize the time required for a group of robots to
search an area and deliver every resource in the environment
back to a home-nest. We assume that the area of interest is a
square region in the 2D plane with an area A = L2, where L
is the length of the region. Located at the center of the region
is the home-nest which also acts as the origin of a local
coordinate system.While we assume a square environment,
adapting to different shapes and layouts would be as simple
as generating new partitions and way points for the agents
to follow on their search path. It is even conceivable to
dynamically generate the partitions and paths for the agents
to follow.

The objectives of CPF require coordinated pathing of a
group of N differential drive skid-steer robots. The state
of a skid-steer vehicle x can be represented by the triplet
(xd, yd, θ) ∈ SE(2), where (xd, yd) ∈ R2 describe the
position of the vehicle center of gravity and θ ∈ S1 represents
the orientation. Vehicle control input u ∈ R2 is modeled as
(v, ω) ∈ R2, where v is the forward velocity of the vehicle
center of gravity and ω is the rate of change in vehicle
orientation. Motion of the vehicle evolves according to the
following kinematic equation:

ẋ =

ẋdẏd
θ̇

 = f(x, u) =

v cos(θ)v sin(θ)
ω

 . (1)

For more details on skid-steering kinematics, the authors
refer you to [20].

We then assume that a control algorithm exists that, in the
absence of obstacles, will guarantee rover traversal to the
goal waypoint [20]. This controller is modeled by:

u = g(xc, xg) (2)

where xc ∈ SE(2) describes the rover’s current pose, and
xg ∈ SE(2) describes the rover’s goal pose. During the
deterministic search phase it is necessary to follow paths
with sharp corners at each waypoint to ensure that the entire
search area is covered. To guarantee that each rover follows
the desired search path, a rotation pivot controller is executed
at each waypoint to orient the robot in the direction of
the desired next waypoint before executing the waypoint
controller (2).

Each robot is equipped with a sensing device that is
capable of detecting and locating individual resources when
they come within some limited field of view, F . Additionally,
each robot has the capability to collect and carry exactly one
resource at a time. Upon returning to the home-nest, the robot
can deposit the collected resource and return to the field to
collect other resources.

Obstacle avoidance is a critical capability of any robot
operating in large groups. Robot to robot encounters most
commonly occur when multiple agents are trying to pick up
resources from nearby locations, as well as when several
agents are trying to drop a resource off near the single
home-nest. Obstacles are detected by a set of range sensors
mounted in the front of each agent. We assume that each
sensor has a maximum range, and the collection of sensors
can determine if the object is located in the front-right,
front-center, or front-left of the robot. Upon one or more of
these rays being interrupted, an Obstacle Detection event is
generated. Upon handling of the event, the agent saves the
position that caused the event onto a stack, then attempts
to move to an alternate nearby location to the side of
the detected object. This process continues until Obstacle
Detection events are no longer being received. Once the
agent is able to attempt to resume Collection, the agent’s goal
location is set to the oldest position from its saved waypoint
stack.

III. MULTIMODAL DISTRIBUTED FORAGING
ALGORITHM

A. Overview

In our approach to the CPF, Multimodal Distributed For-
aging Algorithm (MMDF), agents take on the role of either
a Searcher or a Collector. Each agent begins as a Searcher,
but upon completing its search path, transitions to Collector.
By searching before collecting, agents are able to maximize
the number of targets found while minimizing the distance
traveled during this phase. The agents are then able to use
the data gathered during the searching phase to inform the
collection phase. We use this information to assign the closest
available target to an agent while at the same time keeping
the agents apart from one another, preventing collisions. This
data could also be used for a variety of other purposes
including fitting a pattern to the target distribution as well as
more complex path planning with additional pickup capacity.

B. Target Handling

The state of each target in the environment is shared
amongst each agent in the system. Each time the target



sensor detects one or more targets within its field of view, it
processes the detection and publishes various messages when
a target changes its state. Each target is initialized to be in
the Unknown state, which means that its position cannot yet
be determined. Regardless of the role of the agent, all targets
that have not been detected previously need to be reported as
Detected, which means sending a message consisting of the
target’s unique identifier as well as the position at which the
target was seen. Upon receipt of the detection message each
agent updates their local Target State list so as to have that
target’s position stored and state changed to Detected. The
goal of each agent in Search mode is to detect as many of
the Unknown targets as possible, and Search agents do not
have the ability to transition a target from any other state than
from Unknown to Discovered. For Collector agents the action
that needs to be taken depends on whether the Collector is
carrying a target or has claimed a target.

Figure 1 shows the various states and transitions for each
target and Algorithm 1 provides a more detailed description
of the target processing algorithm:

Fig. 1: State Diagram for targets.

Algorithm 1 Target Handler: Determines what actions to
take upon seeing target or home tags.

1: for <target in targets in view> do
2: if isUnknownTarget(target) then
3: reportDetected(target);
4: if role == COLLECTOR then
5: if capacity == CARRY ING then
6: if isHomeTag(target) then
7: isHomeSeen = true;
8: dropOff(claimed);
9: else

10: if capacity == CLAIMED then
11: if claimed! = target then
12: unclaim(claimed);
13: isTargetSeen = true;
14: pickup(target);

C. Searcher

The goal of agents in the Searcher role is to determine
the location of as many targets as possible by driving over
them in such a way that every target falls within the sensor’s
field of view, F . Each Searcher follows a set of way-points
guaranteed to have complete coverage of the environment by
following a spiral pattern inspired by the DDSA algorithm.
As agents search the area, they broadcast the location and

a unique identifier for each target that comes within their
sensor’s vision. Upon receiving these broadcasts, each agent
stores a local copy of a data structure that contains all known
outstanding targets.

The Searchers first seek to divide the area of interest into
regions of equal area and assign each agent to search a
particular region in isolation. In this way, agents are less
likely to physically encounter each other even in imperfect
navigation conditions. Let N be the number of searching
agents in a region of area A with a side of length, L. We
define two new variables,

F =
L
2

L =
F
2
.

We then may calculate the length of each partition side with
the function:

l(x) =
√

(L · 2)2 + l(k − 1)2

where k ∈ {1, 2, ..., N}, and the distance between each
partition as:

h(k) =
l(k)− l(k − 1)

2

where k ∈ {1, 2, ..., N} & h(0) = 0, h(N + 1) = 0.
With these functions, we may now define a function to

determine the total distance to the partition with:

H(k) =

N∑
i=k

h(i)

Figure 2 displays a possible partitioning of the arena where
N = 3.

Fig. 2: Example of a partition scheme for N = 3.



Setting the origin to the center of the arena, we can now
calculate x, y waypoint coordinates with the following:

Wi,n =



n ≡ 0(4) (L−H(i+ 1)− nF ),
(L−H(i+ 1)− (n+ 1)F )

n ≡ 1(4) (−L+H(i+ 1) + (n+ 1)F ),

(L−H(i+ 1)− (n+ 1)F )

n ≡ 2(4) (−L+H(i+ 1) + (n+ 1)F ),

(−L+H(i+ 1) + (n+ 1)F )

n ≡ 3(4) (L−H(i+ 1)− (n+ 1)F ),

(−L+H(i+ 1) + (n+ 1)F )

where i is the partition number, i ∈ {1, 2, ..., N} and n is
the waypoint index. There is a special case when n = 0,
the x value is (L−H(i+1)−F ). Waypoints are generated
counter-clockwise starting from the upper left hand corner.
Figure 3 shows an example of this for partition i = 1.

Fig. 3: Example of waypoints on i = 1.

The spiral paths described above retain the minimum
search time property of the DDSA [9], but by partitioning the
search region, the agents are no longer searching on adjacent
paths. For each agent the search path is stored on a stack,
and as each goal location is reached, it is popped from the
stack to allow the agent to move to the next waypoint. Unlike
DDSA, in which discovered targets are immediately brought
to home, when a MMDF Searcher encounters a target, it
does not take it back to home, it broadcasts its location and
identifier and continues on its search path. After an agent
has finished searching their region, which means that its set
of waypoints has been exhausted, they switch modes to that
of a Collector.

D. Collector

Now that the locations of the targets have been determined
by the Searcher agents, the Collectors return to each of the
target locations in order to retrieve it and bring it to the home-
nest. Each Collector follows a state machine, described in

Algorithm 2, that carries it through the travel, pickup, and
return process. This process continues until all known targets
have been collected.

Algorithm 2 Collector State Machine: Determines which
goal and state to transition to.

1: if obstacle encountered == true then
2: goal = getAlternativeLocation();
3: previous state = current state;
4: obstacle encountered = false;
5: current state = OBSTACLE;
6: if current state == GO TO TARGET then
7: if isTargetSeen then
8: goal = getHomeLocation();
9: current state = GO TO HOME;

10: else if isGoalReached() then
11: goal = getRandomNearbyGoal();
12: else if current state == GO TO HOME then
13: if isHomeSeen() then
14: goal = getNextTargetGoal();
15: current state = GO TO TARGET;
16: else if isGoalReached() then
17: goal = getRandomNearbyGoal();
18: else if current state == OBSTACLE then
19: if isGoalReached() then
20: goal = getCurrentLocation();
21: current state = previous state;
22: goTowardsGoal();

When a Collector agent is in need of a target, it will search
its list of Target States for the closest Detected target and then
claim it. Once a target is Claimed by a Collector, a sector
of the search space in the direction of the claimed target is
off limits to other agents. In Figure 4, an agent has claimed
the target marked by a c in the large cluster of targets in
the upper right of the figure, making the sector formed by
the angle β temporarily inaccessible to other agents. This
is an important step in the MMDF algorithm as it aides
in reducing congestion on the traffic lanes between large
clusters of targets and the home-nest, prevents two agents
from going after the same target, and reducing collisions
between agents due to low proximity.

On route to the expected location of the claimed target, any
Unknown or Discovered target encountered will be picked up
instead. If the Collector has arrived at the expected location
of a target and nothing has been detected, the Collector
will perform a randomized search in an attempt to find the
target. Once a target has been located the Collector will then
broadcast a Pick-Up message containing the target’s unique
id. Each receiving agent updates their target states so that no
additional attempts to collect that target are made. Once this
message is published the Collector agent now travels back
to the home-nest.

Once the Collector has reached the location of the home-
nest, the Collector looks for visual cues of the home-nest.
If the home-nest is not visible, the Collector will perform



Fig. 4: Sector of angle β has been claimed by an agent
therefore other agents must claim targets outside this sector.

a randomized search about that location. Once home-nest is
visible, the Collector drops off the target and broadcasts a
message signaling to the other agents that this target has been
collected. The sector claimed by that agent is released when
the corresponding Dropoff message has been received by the
other agents. The collection process for the agent dropping
off the target is then repeated.

IV. SIMULATION SETUP

The proposed MMDF algorithm was developed and vali-
dated on the NASA Swarmathon 2017 [3] swarm robotics
platform. Our algorithms are implemented in C++ using
the Robot Operating System (ROS) [21] framework and the
Gazebo plug-in for the Graphical User Interface (GUI).

A. Simulation Setup

The search region is a 15 by 15 meters square with walls
at the boundaries. There were 256 targets in this environment
that were distributed in two ways, uniform and clustered. If
the environment is in the uniform configuration, the targets
are randomly distributed around the map in such a way that
every location is equally likely to contain a target. If the
environment is in the clustered configuration, every target
is contained within four large square clusters of targets,
each containing 64 targets. For these simulation experiments
N = 3 agents were used and all agents were initialized to
be Searchers.

The ROS environment allows for easy message passing of
any type of data between agents. Messages are able to be
sent by an agent through publishing on a specific ”topic”,
similar to a subject line of an email. Messages are received
by subscribers that constantly listen for a message to be

published on one of these topics. Once a message is received
it is parsed and able to be stored within an agent’s state.
This is the primary means of an agent to communicate with
any other agent. Any type of communication activity will
therefore need to pass through this messaging system.

In this simulation environment, targets are represented by
AprilTag patches that are placed on the ground and the
target detection sensor is a webcam and AprilTag detection
software. All agents share a list of target states. Each target’s
state consists of its unique identifier, the location of the
target (initialized to unknown), and whether it has been seen,
picked up, or has been dropped off at home. Target state
is able to be changed by any agent seeing a previously
undiscovered target, or picking one up, or dropping it off
at home. When any of these events occur the state of that
target is updated by all of the agents. Targets are detected or
”picked up” when the agent’s camera senses an AprilTag on
the ground. The image is processed and the target’s unique
identifier is received by the agent.

V. RESULTS

A total of 25 simulations were performed for both a
uniform target distribution and a clustered distribution. For
each run the DDSA and MMDF algorithms were each
applied to same target distribution. The time at which each
target was delivered to the home-nest was recorded.

Table I shows a comparison of the percentage of total
targets collected after 15, 30, 45, and 60 minutes for both
uniform and clustered target distributions. At the 15 minute
point DDSA is clearly collecting a high percentage of the
targets than MMDF as expected since MMDF searches the
entire region before collecting any targets. By the 30 minute
point MMDF has collected as many targets as DDSA, and by
the 60 minute point MMDF has collected 17.4% and 11.2%
more targets for the uniform and clustered distributions
respectively.

Figures 5 and 6 contain the search trajectories for each
algorithm for the first 400 seconds of the operation. In Figure
5, it can be seen that for MMDF hardly any resources have
been collected, but a complete search of the region is nearly
complete. In Figure 6, it can be seen that for DDSA several
resources have been collected near the home-nest, but only
a small portion of the region has been searched.

In Figures 7 and 8 it is clear to see that MMDF initially
pays a time penalty, as no resources are collected while
agents are searching, but quickly after the initial search phase
is completed the MMDF overtakes the DDSA algorithm and
collects resources at a faster rate. The main explanation for
this is that after the initial search phase all resource loca-
tions are known, so collectors can optimize their collection
sequence to reduce congestion on the lanes to and from the
home-nest.

VI. CONCLUSION

We have proposed a multimodal foraging algorithm, sep-
arating the tasks of searching and collecting. One of the
benefits of our approach is being able to improve each mode



% Collected
15 minutes 30 minutes 45 minutes 60 minutes

Uniform MMDF 23.1 ± 0.9 51.8 ± 1.9 76.0 ± 2.0 96.3 ± 2.1
DDSA 26.1 ± 0.6 45.8 ± 0.6 63.7 ± 0.6 78.9 ± 0.7

Clustered MMDF 19.0 ± 1.1 49.6 ± 2.3 75.7 ± 2.9 95.2 ± 2.3
DDSA 25.5 ± 2.4 48.5 ± 3.7 67.4 ± 3.7 84.0 ± 3.6

TABLE I: Percentage of Total Targets Collected after 15, 30, 45, and 60 minutes for both Clustered and Uniform target
distributions. Each entry shown with corresponding 95% confidence interval.

Fig. 5: Search Trajectory of MMDF for first 400 seconds of
search.

independently of the others. The search algorithm covers the
environment as fast as possible with minimal oversampling
and locates close to all the resources, even under imperfect
sensor readings. In the future we will need to continue to
optimize search mode to ensure more complete detection
of resources in presence of realistic error. The collection
algorithm, knowing the location of most of the resources,
collects them in near linear time, scaling with the distance of
the resources from home. Optimizing collection with location
of all targets known to prevent agent collision is also of
high priority. We are also interested in experimenting with
increased resource capacity of agents, as well as multiple
collection depots.

In addition we have proposed a system of locking di-
rections for agents to collect in. This method reduces the
number of collisions by having the agents going to and from
home in different directions. Despite this progress, one of
the main factors of speed reductions continues to be obstacle
avoidance. Agents continue to occasionally collide, although
this is now less frequent.

We compare the results to the DDSA algorithm proposed
by Fricke and show a significant increase in performance in
both uniform and clustered resource configurations. While
we do initially pay a performance penalty by not collecting

Fig. 6: Search Trajectory of DDSA for first 400 seconds of
search.

while searching, our rate of pickup after search allows us to
quickly catch up to and surpass the performance of DDSA.
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