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Abstract— We investigate a computationally and memory
efficient algorithm for radio frequency (RF) source-seeking with
a single-wing rotating micro aerial vehicle (MAV) equipped
with a directional antenna. The MAV is assumed to have no
knowledge of its position and to have only an estimate of
orientation through a magnetometer. A key novelty of our
approach is in exploiting the rotation of the MAV and the
directionality of its RF antenna to derive estimates of the angle
of arrival (AOA) at each rotation. The MAV then follows the
estimated direction until the next rotation is complete. We
prove convergence of this greedy algorithm under rather weak
assumptions on the noise associated with the AOA estimates,
using recent results on the property of recurrence for systems
governed by stochastic difference inclusions. These convergence
results are supplemented by simulations quantifying the amount
of excess travel, relative to the straight line distance to the
source. Indoor experiments using Lockheed Martin’s Samarai
MAV demonstrate the efficacy of the greedy algorithm both for
static source-seeking, and for the more challenging problem of
tracking a moving source.

I. INTRODUCTION

We consider the problem of drawing in a micro aerial
vehicle (MAV) towards an RF source by using the received
signal strength (RSS) to guide the MAV’s trajectory. The
RF beacon could originate from a source for search and
rescue in civilian/military operations, or from a sensor that
wishes to establish an on-demand high data rate link with the
MAV. There are two key challenges in solving this problem:
first, since MAVs are very small and light, the computa-
tional power and the size of the RF sensors on-board an
MAV are highly constrained. On the other hand, the spatial
RF field is complex and it is difficult to make inferences
from: waves scattered off reflectors lead to numerous local
minima and maxima in signal strength at different locations,
rendering simple source-seeking algorithms that rely on
the local gradient information of the underlying field very
fragile. We alleviate these difficulties by jointly designing
the MAV platform, the on-board sensors, and the source-
seeking algorithm. This joint design provides us with enough
flexibility to adhere to all the complexity constraints and yet
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build a system that is very efficient in terms of minimizing
the distance traversed while localizing the source.
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Fig. 1. A photograph of the MAV fitted with a conformal antenna and an
Xbee radio. As the antenna rotates, the MAV estimates the source bearing
to be the direction in which the RSS is largest and moves in this direction.

We use the single-wing rotating Samarai MAV presented
in [1]. It consists of a pod-like structure that houses the elec-
tronics (including the microprocessor) and a rotating blade
that is fitted to the avionics pod as shown in Figure 1. This
design, inspired by the structure of maple seeds, has numer-
ous mechanical advantages: it is simple, it is stable in hover,
it has clean aerodynamics and it has a factor of ten smaller
wing loading than conventional designs, which significantly
reduces its power requirement. We attach a directional RF
antenna to the rotating blade, which is key towards solving
the source-seeking problem with low complexity: as the
antenna rotates, we can measure the signal power incident
from different directions. In a Line-of-Sight (LoS) scenario,
the direction in which the RSS is maximal provides the
bearing to the source. We build on this idea in choosing the
MAVs path: after each rotation of the MAV, we average the
angular RSS pattern observed over the previous few rotations
and pick the direction in which the average RSS is largest.
The MAV translates in this direction even as it continues
to rotate and the process is repeated at the end of the next
rotation. There is no mobility cost involved in making these
bearing measurements, which is not the case for platforms
that are not constantly rotating (such as fixed wing aircraft or
ground robots), where a rotation of the platform necessarily
slows down the translational motion. In our case, the single-
wing MAV rotates whether it is translating or hovering and,
therefore, the bearing information is always available. This
scheme is also easy to implement: all that is needed for sens-
ing is a directional antenna and a magnetometer (to establish
a reference direction) and, in terms of storage/computation
we only need to compute a running average of angular RSS
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patterns and choose the best direction.
While the simplicity of the proposed scheme makes it

attractive, we also need to demonstrate that it is effective
in realistic settings when the received signal includes inter-
ference from reflected paths in addition to the Line-of-Sight
path. To provide some analytical insight into this question,
we consider a simple model where each bearing estimate is
either (a) the true bearing plus some relatively small additive
noise, or (b) a complete outlier, perhaps originating off some
reflectors whose positions we do not explicitly model. The
latter occurs with some “outlier” probability p, while the
former occurs with probability 1− p. We prove convergence
results for this model under two different, but both relatively
weak, assumptions on the sequence of outlier values that we
observe, thereby establishing the robustness of the algorithm.
We then present simulations to quantify the performance of
the proposed algorithm and experimental results that validate
the theory and the simulations.
Contributions: Our main contributions can be summarized
as follows:
• We propose a simple architecture for localizing an

RF source using bearing measurements from a directional
antenna mounted on a rotating MAV.
• We introduce an RF seeking algorithm that consists of

three steps: (i) form the spatial RSS pattern observed after
each rotation, (ii) reduce noise by passing the spatial RSS
profile through an autoregressive filter and (iii) instruct the
MAV to translate in the direction for which the averaged
RSS pattern is largest.
•We prove two convergence results for a stochastic model

of the proposed source-seeking algorithm: We first show that
when the sequence of values taken by the outlier angles is
independent and identically distributed (and extremely weak
conditions that quantify how “small” the additive noise can
be), the MAV will return to a small ball surrounding the
source infinitely often. When the outlier bearings originate
off a few fixed reflectors, assuming the outlier values to be
independent might be optimistic. To avoid this assumption,
we prove a similar result under more relaxed criteria on
the sequence of outliers, but stronger assumptions on the
probability with which they occur. Specifically, we show
that if the outlier probability p is smaller than a threshold
depending only on the additive noise distribution, then no
matter how the outlier values arise, the MAV will return to
a small ball surrounding the source infinitely often.
•We present detailed Monte Carlo simulations to quantify

the excess distance traversed by the MAV relative to the
straight-line distance between its starting location and the
source. Under the independent outlier model, we find that
even for relatively large values of the outlier probability p
and additive noise, the excess distance traversed is small.
• We present experimental results where an MAV seeks

an RF source starting from a distance of about 50m. While
the algorithm is designed with stationary sources in mind,
we show through our experiments that it is equally effective
in following mobile sources.
Related Work: Source-seeking and localization of RF emit-

ters has been a topic of extensive recent research. Much of
the relevant related work falls into one or more of three
categories, source-seeking, network localization, and bearing
estimation.

Source-seeking with mobile agents has been studied for a
number of fairly general signal fields and vehicle models [2–
5]. While the concepts proposed in some of these references
can be applied to the specific problem of seeking an RF
source, we find that exploiting the properties of the RF field
and the sensing architecture gives us substantial benefits.
Closer to our work, in [6], the motion of a mobile robot
is utilized along with an omni-directional radio to estimate
the RSS gradient by taking signal strength measurements
at a sequence of locations. This method depends on the
mobile robot to accurately know its position relative to the
starting point of the gradient measurement and also relies
on monotonicity and symmetry of the signal strength decay
as a function of distance between transmitter and receiver
which may be problematic under multi-path scenarios. The
problems of frontier exploration and radio source-seeking
were addressed in [7] by using local RSS gradient estimates
to govern which frontier waypoint to approach. In [8], a
rotating directional antenna is mounted on a wheeled mobile
robot for the purpose of wireless node localization. The
RSS is measured as a function of antenna angle and cross-
correlation with a known antenna gain pattern is used to
determine the relative bearing between an unknown radio
source and the mobile robot. A particle filter is used to
determine the location of the unknown radio source. Unlike
our work, [8] needs to attach a servo motor for the robot to
rotate, leading to extra payload and power requirements. A
different approach to source-seeking that uses RSS measure-
ments from an omnidirectional antenna mounted on a UAV
to compute the spatial gradient is described in [9].

The fundamental problem of bearing estimation has re-
ceived a lot attention. For example, a direction-of-arrival
(DOA) sensor constructed using an actuated parabolic reflec-
tor is described in [10]. The DOA is found by identifying the
direction of the maximum received signal strength indicator.
In [11], the authors make the clever observation that while
rotating a wireless antenna around a signal-blocking obstacle
one can infer the angle of arrival of the received signal from
the direction in which the signal was most attenuated.

In both [12] and [13], a mobile robot is equipped with
a directional antenna for the purpose of localizing multiple
stationary nodes in a wireless network. A localization algo-
rithm based on a particle filter was used in [12], while a spa-
tiotemporal probability occupancy grid was used in [13] to
track posterior probability distributions of source locations.
A Multi-Hypothesis Extended Kalman Filter framework is
used to localize agents in a mobile robot team in [14], where
each robot is equipped with an antenna that provides a π
periodic estimate of the relative bearing between each pair
of communicating agents.
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Fig. 2. The gain pattern of the directional antenna fitted on the rotating
wing of the MAV.

II. RSS MEASUREMENTS & ALGORITHM

The MAV is fitted with an XBee radio with a custom
designed directional antenna whose gain pattern in the az-
imuthal plane is shown in Figure 2. We use the antenna to
make RSS measurements 600 times a second as the MAV
rotates and translates. We denote the RSS measurement at
time t by Pt. At the same time t, we use a magnetometer
to estimate the antenna’s orientation relative to a reference
direction and denote it by βt.

In a single path Line-of-Sight environment, the bearing
to the source is given by the direction in which the RSS
is largest as the MAV rotates. While this observation forms
the basis of our algorithm, we need to modify it to better
handle practical settings, where the received signal may have
significant measurement noise, leading to large errors. To
reduce such errors, we average the variations in the RSS
patterns over multiple rotations.

Our implementation is further constrained by the fact that
RSS patterns from different rotations can only be averaged
in a coarse manner. As the MAV rotates, it only makes RSS
measurements at discrete antenna orientations (say, spaced
7◦ apart) and are not necessarily integer divisors of 360◦.
Therefore, the angles at which the RSS is measured varies
across multiple rotations. Consequently, we coarsely average
the RSS pattern over multiple rotations as follows: we split
the angular space into appropriately sized bins so that, in
every rotation, there is at least one RSS measurement in each
bin. We use all the measurements that fall into a bin over a
rotation to update the average RSS value corresponding to
that bin.

Specifically, our algorithm proceeds in the following man-
ner:

1) We divide the angular space into B bins, with the bth
bin spanning [ 2π

B (b− 1), 2π
B b], b = 1, 2, . . . , B.

2) We maintain an average RSS value for each bin and
denote the value in the bth bin by Q[b].

3) As the MAV rotates, suppose that we get an RSS
measurement Pt and the corresponding yaw for the
MAV βt. We identify the bin in which the yaw falls
(say bin b0) and update the average RSS in this bin
using an autoregressive filter:

Q[b0]← αQ[b0] + (1− α)Pt. (1)

4) At the end of a rotation, we pick the bin that has the
largest value of the average RSS Q[b]. Denoting this
bin by b̂, we instruct the MAV to fly in a direction that
makes an angle of 2πb̂/B with the azimuth.

5) We return to Step 3 and repeat the process.
In the rest of the paper, we assume that the bin size B is
given. A detailed analysis of the impact of the bin size is
left for future work.

III. ANALYSIS

We now provide analytical insight into the algorithm
using a stochastic model for the bearing measurements made
after each rotation and proving that, under this model, the
proposed algorithm will converge.

The bearing estimates typically fall into one of two cate-
gories: (a) they are roughly correct, with small errors that can
be attributed to the bin quantization and small measurement
noise or (b) they are outliers and have large errors, either
due to large measurement noise or because signals from
reflected paths distort the bearing estimate. We propose a
first-order model to capture these possibilities: we assume
that reasonably correct estimates occur with probability 1−p
and outlier estimates occur with probability p. We analyze
the algorithm under two different models for the sequence of
outliers. First, we consider outlier values that are independent
of one another, potentially caused by measurement noise
that is occasionally large. Subsequently, we analyze the case
where the outlier values are arbitrary and possibly highly
correlated. This could arise from outlier estimates caused by
reflectors, which typically would not be independent of each
other. In both cases, we use recently established Lyapunov
results to prove the recurrence of appropriately defined sets
for discrete-time differential inclusions.

A. Stochastic Motion Model

Suppose that, after the kth rotation, the MAV makes
a bearing estimate ψk of an RF source according to the
following model:

ψk = (1− σk)(θk + nk) + σkwk, ∀k ∈ Z≥0, (2)

where θk denotes the true direction of the source after
the kth rotation, nk an i.i.d. sequence of additive noise,
wk is a sequence of outlier measurements (not necessarily
independent), and σk ∈ {0, 1} an i.i.d. sequence of Bernoulli
random variables with parameter p ∈ [0, 1). The event
σk = 1 corresponds to the sensor producing an outlier
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measurement after the kth rotation, that is unrelated to the
true direction of the source.

Assuming the source is at the origin and the MAV is at
(xk, yk), the true source direction θk satisfies

cos θk = −xk

rk
, sin θk = −yk

rk
.

where rk :=
√
x2

k + y2
k is the MAV’s distance from the

source.
We assume that at each time step, the MAV moves in the

estimated source direction ψk for a fixed distance h. Thus,
the MAV’s position satisfies the recursive relationship[

xk+1

yk+1

]
=

[
xk

yk

]
+ h

[
cosψk

sinψk

]
(3)

Using the trigonometric expansions

cos(θk + nk) = −xk cosnk

rk
+
yk sinnk

rk
,

sin(θk + nk) = −xk sinnk

rk
− yk cosnk

rk
,

in (3), we conclude that[
xk+1

yk+1

]
= (1− σk)

[
(1− hr−1

k cosnk)xk + hykr
−1
k sinnk

(1− hr−1
k cosnk)yk − hxkr

−1
k sinnk

]
+

σk

[
xk + h coswk

yk + h sinwk

]
.

B. Stochastic Outliers

We begin by considering the case where the sequence of
outlier measurements wk are i.i.d.

Lemma 1: Assume that nk, wk, and σk are i.i.d. se-
quences with

E[coswk] = E[sinwk] = 0, (4)

and that

η := E[cosnk] > 0. (5)

Then, the set

O :=
{

(x, y) ∈ R2 :
√
x2 + y2 <

h

2(1− p)η

}
is globally recurrent for (3). �

Before proving this result, it is worth emphasizing that this
result holds under fairly mild assumptions: The condition (5)
essentially requires the additive noise angle nk to be mostly
concentrated in the region [−π/2, π/2] for which the cosine
is positive. The condition (4) requires some symmetry in the
distribution of the outlier measurements so that the average
of its sine and cosine are both zero.

Proof of Lemma 1. Defining V (x, y) := α(x2 + y2), we
have

E[V (xk+1, yk+1)− V (xk, yk) | xk, yk]

= αE
[
(1− σk)

(
(1− hr−1

k cosnk)2r2k + h2 sin2 nk

)
+

σk

(
r2k + h2 + 2hxk coswk + 2hyk sinwk

)
− r2k | xk, yk

]
= αE

[
(1− σk)(1 + h2r−2

k cos2 nk − 2hr−1
k cosnk)r2k+

σk

(
h2 + 2hxk coswk + 2hyk sinwk

)
+ (σk − 1)r2k+

(1− σk)h2 sin2 nk | xk, yk

]
= αE

[
h2 − 2h(1− σk)rk cosnk + 2hσkxk coswk+

2hσkyk sinwk | xk, yk

]
.

Using the fact that nk, wk, and σk are i.i.d., we conclude
that

E[V (xk+1, yk+1)− V (xk, yk) | xk, yk]

= αh2 + 2αhp(xkE[coswk] + ykE[sinwk])
− 2αh(1− p)E[cosnk]rk

= −2αh(1− p)ηrk + αh2,

where we used (4) in the second equality. Setting α := 1/h2,
we have

E[V (xk+1, yk+1)− V (xk, rk) | xk, yk]

= −2h−1(1− p)ηrk + 1 = −ρ(rk) + I<ε(rk),

where

ρ(r) =

{
2h−1(1− p)ηr r < ε

2h−1(1− p)ηr − 1 r ≥ ε

and I<ε(r) is the indicator function taking the value 1 when
r < ε and 0 otherwise. Assuming that η > 0, this function
is positive as long as

2h−1(1− p)ηε > 1⇔ ε >
h

2(1− p)η
,

from which we can conclude that the following set is globally
recurrent

O :=
{

(x, y) ∈ R2 :
√
x2 + y2 <

h

2(1− p)η

}
[15], i.e., the state (xk, rk) will always return to this set with
probability one.

C. Worst-case outliers

When the outliers result from reflections off a specific
object, the sequence of outliers wk need not be i.i.d. To
account for such scenarios, we allow for any arbitrary (worst-
case) sequence of outliers wk ∈ [0, 2π].

Lemma 2: Assume that nk and σk are i.i.d. sequences and
that

p <
η√

2 + η
, η := E[cosnk] > 0. (6)
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Then, the set

O :=
{

(x, y) ∈ R2 :
√
x2 + y2 <

h

2(η − pη − p
√

2)

}
is globally recurrent for any solution to (3) that is adapted
to the filtration generated by (nk, σk), k ∈ Z≥0 with wk ∈
[0, 2π]. �

We emphasize that Lemma 2 no longer places any assump-
tion on the sequence of outliers. The price to pay is that we
can only guarantee convergence when the probability of an
outlier measurement satisfies (6). Lemma 2 applies to any
solution to (3) that is adapted to the filtration generated by
(nk, σk), k ∈ Z≥0. This technical condition is needed when
one mixes worst-case selections with stochastic processes
and it essentially excludes the possibility for selections of a
worst-case outlier wk that depends on future realizations of
the stochastic processes η`, σ`, for ` > k [15].

Proof of Lemma 2. As in the proof of Lemma 1, we find a
globally recurrent set by computing

E[sup
wk

V (xk+1, yk+1)− V (xk, yk) | xk, yk]

= αE
[
sup
wk

h2 − 2h(1− σk)rk cosnk + 2hσkxk coswk+

2hσkyk sinwk | xk, yk

]
= αE

[
h2 − 2h(1− σk)rk cosnk + 2hσk(|xk|+ |yk|) | xk, yk

]
= αh2 − 2αh(1− p)ηrk + 2αhp(|xk|+ |yk|).

Using the fact that

|xk|+ |yk| ≤
√

2rk,

we conclude that

E[sup
wk

V (xk+1, yk+1)− V (xk, yk) | xk, yk]

≤ −2αh
(
(1− p)η − p

√
2
)
rk + αh2.

Setting α := 1/h2, we have

E[V (xk+1, yk+1)− V (xk, rk) | xk, yk]

≤ −2h−1
(
(1− p)η − p

√
2
)
rk + 1 = −ρ(rk) + I<ε(rk),

where

ρ(r) :=

{
2h−1

(
(1− p)η − p

√
2
)
r r < ε

2h−1
(
(1− p)η − p

√
2
)
r − 1 r ≥ ε.

Assuming that

(1− p)η − p
√

2 > 0⇔ p <
η√

2 + η
,

this function is positive as long as

2h−1
(
(1− p)η − p

√
2
)
ε > 1⇔ ε >

h

2(η − pη − p
√

2)
,

from which we can conclude that the following set is globally
recurrent

O :=
{

(x, y) ∈ R2 :
√
x2 + y2 <

h

2(η − pη − p
√

2)

}
[15], i.e., the state (xk, rk) will always return to this set with
probability one.

Fig. 3. Average stretch for different choices of outlier probability p and
standard deviation of additive noise σ.

IV. SIMULATION RESULTS

To simulate the algorithm, we begin with the RF source
at the origin of a two-dimensional plane and the MAV at
position (50m, 50m). At each time step, the MAV makes
a bearing measurement according to the model in (2). The
additive noise nk and the outliers wk are both independent
across time with nk ∼ N(0, σ2) and wk is chosen uniformly
from [0, 2π]. The MAV then moves a distance h = 0.1m
in the direction of the bearing, after which the process is
repeated. We terminate the simulation when the MAV is
within 1m of the source. We run simulations for multiple
values of the outlier probability p between 0 and 0.6 and the
standard deviation of the additive noise σ between 0 and π/3.
For each choice of p and σ, we run 1200 trials. We quantify
the algorithm’s performance by its stretch, defined to be the
ratio of the distance traversed by MAV and the straight-line
distance between the source and the MAV’s starting location.

We plot the average stretch for different choices of p and σ
in Figure 3. We observe that even for relatively large values
of p and σ, the stretch is fairly small. For example, the stretch
is only 1.6 even when outliers occur with a probability p =
0.4 and the noise standard deviation σ = 20◦.

We plot the distribution of the stretch in Figure 4 to
understand the variability in performance. Specifically, we
plot histograms of the stretch for different values of σ, with
p set to 0.2667 in Figure 4(a). Similarly, Figure 4(b) plots
histograms of the stretch for different choices of p with
σ = 0.4654. We see from this figure that the distribution
in the stretch increases fairly fast with the probability of
outliers. On the other hand, Figure 4(a) shows that the
distribution in the stretch increases much more slowly with
the standard deviation of the additive noise σ. The reason for
this is intuitive: additive noise perturbs the true estimate, but
the MAV still moves in the general direction of the source.
Outliers, however, can send the MAV in any direction. Thus,
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(a) Distribution of stretch for differ-
ent values of σ, with p set to 0.2667.

(b) Distribution of the stretch for dif-
ferent values of p, with σ set to
0.4654.

Fig. 4. Distribution of the stretch as we vary one of the two parameters p
and σ while holding the other fixed.

Fig. 5. Distribution of Angle of Arrival errors.

as the probability of outliers increase, the MAV makes
random-walk like steps more frequently, thereby increasing
the variability in the stretch.

V. EXPERIMENTAL RESULTS

A. Angle of Arrival Verification Test

The first experiment was designed to characterize the
bearing errors seen by the MAV as well as the probability
of an outlier. The experiments were conducted in a domed
soccer field complex. We instructed the MAV to fly in a criss-
cross pattern around a stationary source while recording the
AOA estimate, GPS location of the source, GPS location of
the MAV, and raw RSS. The histogram of the error between
the estimated AOA and ground truth AOA calculated from
comparing GPS measurements of the MAV and source can
be seen in Figure 5. Out of 2671 AOA estimates there were
613 errors of greater than π/3, and the mean and standard
deviation of all 2671 measurements were −0.04 and 1.02
radians, respectively.

B. Stationary Source-Seeking and Mobile Source-Tracking

We ran several experiments using the algorithm described
in Section II with the shortest distance between the MAV’s
starting position and the source at roughly 50 meters. In the
example run shown in Figure 6, the MAV started at a distance

(a) MAV’s trajectory as it seeks a stationary source located at the
origin.

(b) Headings computed by MAV after each rotation

Fig. 6. Results from MAV seeking a stationary source showing the MAV’s
trajectory and the headings that it follows.

of 55.16 meters and covered distance of 59.85 meters to
find the source. The sequence of bearing estimates computed
using the source-seeking algorithm is plotted in Figure 6(b).

In addition to the successful experiments with a stationary
source, we have also found in preliminary tests that the
greedy algorithm is successful in tracking a moving source.
An example run is shown in Figure 7. The source (red
trace) starts at [7,−23] while the MAV (blue trace) starts
at [6,−14]. As the MAV gets close to the source, the
source moves in the positive Y direction. Then the source
moves to [−9,−4], the MAV follows, overshoots the source
location slightly, and returns towards the source. The MAV
repeats this behavior as the source moves. We also plot the
sequence of bearing estimates computed using the source-
seeking algorithm in Figure 7(b).

VI. CONCLUSIONS

We have proposed and demonstrated a minimalist architec-
ture for RF source-seeking using a lightweight rotating MAV.
The key idea is to derive bearing estimates using a directional
antenna on the MAV’s rotating blade. Greedy translation in
the direction of these bearing estimates is proven to converge
even in the presence of outliers which are not necessarily
independent, and the dependence of stretch (relative to the
shortest path) on the statistics of the measurement noise
and outliers is quantified via simulations. Indoor experiments
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(a) MAV’s trajectory as it tracks a moving source

(b) Headings computed by MAV after each rotation

Fig. 7. Results from MAV tracking a moving source showing the MAV’s
trajectory and the headings that it follows.

demonstrate the performance of the algorithm both for static
and moving sources. Important topics for future work include
refinement of our analytical model based on electromagnetic
propagation modeling, extending source seeking to three
dimensions by electrically steering the antenna pattern or
mechanically orienting the MAV, extension of our analytical
framework to mobile sources and realistic MAV motion
models, and detailed experimental validation in both indoor
and outdoor environments.
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